Solid particle erosion (SPE) as a common damage mechanism in industrial applications can reduce the effective operation of components or contribute to failure. However, it has beneficial usages in manufacturing processes, especially in abrasive sandblasting and waterjet cutting. The aim of this paper is an investigation of erosive behavior of Ti-6Al-4V alloy through numerical and experimental approaches. A three-dimensional finite element (FE) model is developed using the representative volume element (RVE) to simulate multiple particles impact on Ti-6Al-4V target. Failure and plastic behavior of the target surface due to particles impact is described by Johnson-Cook constitutive equations. Furthermore, erosive behavior of the alloy is experimentally researched by multiple SPE tests. Verification of the implemented approach is studied by comparing the results of the FE model and the SPE experiments. Effects of particles impact angle considering Johnson-Cook coefficient values and particles velocity on erosive behavior of Ti-6Al-4V are also studied. Both numerical and experimental results show a maximum erosion rate of the alloy at an impact angle of 45 deg for spherical sand particles with a diameter of 100 µm. According to the scanning electron microscopy (SEM) images, the erosion process involves both ductile and brittle mechanisms at this angle.

References

1.
Poursaeidi
,
E.
,
Tafrishi
,
H.
, and
Amani
,
H.
,
2017
, “
Experimental-Numerical Investigation for Predicting Erosion in the First Stage of an Axial Compressor
,”
Powder Technol.
,
306
(
Jan.
), pp.
80
87
.
2.
Farahani
,
H.
,
Ketabchi
,
M.
, and
Zangeneh
,
S.
,
2017
, “
Determination of Johnson-Cook Plasticity Model Parameters for Inconel718
,”
J. Mater. Eng. Perform.
,
26
(
11
), pp.
5284
5293
.
3.
Peters
,
J. O.
, and
Ritchie
,
R. O.
,
2000
, “
Influence of Foreign-Object Damage on Crack Initiation and Early Crack Growth During High-Cycle Fatigue of Ti-6Al-4V
,”
Eng. Fract. Mech.
,
67
(
3
), pp.
193
207
.
4.
ElTobgy
,
M. S.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2005
, “
Finite Element Modeling of Erosive Wear
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1337
1346
.
5.
Boyce
,
M. P.
,
2011
,
Gas Turbine Engineering Handbook
, 4th ed.,
Elsevier
,
Oxford, UK
.
6.
Khan
,
A. S.
, and
Yu
,
S.
,
2012
, “
Deformation Induced Anisotropic Responses of Ti-6Al-4V Alloy. Part I: Experiments
,”
Int. J. Plast.
,
38
(
Nov.
), pp.
1
13
.
7.
Oliveira
,
V. M. C. A.
,
Vazquez
,
A. M.
,
Aguiar
,
C.
,
Robin
,
A.
, and
Barboza
,
M. J. R.
,
2015
, “
Protective Effect of Plasma-Assisted PVD Deposited Coatings on Ti-6Al-4V Alloy in NaCl Solutions
,”
Mater. Des.
,
88
(
Dec.
), pp.
1334
1341
.
8.
Khoddami
,
A. S.
,
Salimi-Majd
,
D.
, and
Mohammadi
,
B.
,
2019
, “
Finite Element and Experimental Investigation of Multiple Solid Particle Erosion on Ti-6Al-4V Titanium Alloy Coated by Multilayer Wear-Resistant Coating
,”
Surf. Coat. Technol.
,
372
(
Aug.
), pp.
173
189
.
9.
Nixon
,
M. E.
,
Cazacu
,
O.
, and
Lebensohn
,
R. A.
,
2010
, “
Anisotropic Response of High-Purity α-Titanium: Experimental Characterization and Constitutive Modeling
,”
Int. J. Plast.
,
26
(
4
), pp.
516
532
.
10.
Gheysarian
,
A.
, and
Abbasi
,
M.
,
2017
, “
The Effect of Aging on Microstructure, Formability and Springback of Ti-6Al-4V Titanium Alloy
,”
J. Mater. Eng. Perform.
,
26
(
1
), pp.
374
382
.
11.
Khun
,
N. W.
,
Toh
,
W. Q.
,
Tan
,
X. P.
,
Liu
,
E.
, and
Tor
,
S. B.
,
2018
, “
Tribological Properties of Three-Dimensionally Printed Ti-6Al-4V Material via Electron Beam Melting Process Tested Against 100Cr6 Steel Without and With Hank's Solution
,”
ASME J. Tribol.
,
140
(
6
), p.
061606
.
12.
Martini
,
C.
, and
Ceschini
,
L.
,
2011
, “
A Comparative Study of the Tribological Behaviour of PVD Coatings on the Ti-6Al-4V Alloy
,”
Tribol. Int.
,
44
(
3
), pp.
297
308
.
13.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
14.
Bousser
,
E.
,
Martinu
,
L.
, and
Klemberg-Sapieha
,
J. E.
,
2014
, “
Solid Particle Erosion Mechanisms of Protective Coatings for Aerospace Applications
,”
Surf. Coat. Technol.
,
257
(
Oct.
), pp.
165
181
.
15.
Zambrano
,
O. M.
,
García
,
D. S.
,
Rodríguez
,
S. A.
, and
Coronado
,
J. J.
,
2018
, “
The Mild-Severe Wear Transition in Erosion Wear
,”
Tribol. Lett.
,
66
(
3
), p.
95
.
16.
Sundararajan
,
G.
, and
Roy
,
M.
,
1997
, “
Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures
,”
Tribol. Int.
,
30
(
5
), pp.
339
359
.
17.
Meng
,
H.
, and
Ludema
,
K.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
(
2
), pp.
443
457
.
18.
Aquaro
,
D.
, and
Fontani
,
E.
,
2001
, “
Erosion of Ductile and Brittle Materials
,”
Meccanica
,
36
(
6
), pp.
651
661
.
19.
Yerramareddy
,
S.
, and
Bahadur
,
S.
,
1991
, “
Effect of Operational Variables, Microstructure and Mechanical Properties on the Erosion of Ti-6Al-4V
,”
Wear
,
142
(
2
), pp.
253
263
.
20.
Winkelmann
,
H.
,
Varga
,
M.
,
Badisch
,
E.
, and
Danninger
,
H.
,
2009
, “
Wear Mechanisms at High Temperatures: Part 2: Temperature Effect on Wear Mechanisms in the Erosion Test
,”
Tribol. Lett.
,
34
(
3
), pp.
167
175
.
21.
Avcu
,
E.
,
Fidan
,
S.
,
Yıldıran
,
Y.
, and
Sınmazçelik
,
T.
,
2013
, “
Solid Particle Erosion Behaviour of Ti6Al4V Alloy
,”
Tribol.-Mater. Surf. Interfaces
,
7
(
4
), pp.
201
210
.
22.
Atroshenko
,
S. A.
,
Evstifeev
,
A. D.
,
Kazarinov
,
N. A.
,
Petrov
,
Y. V.
, and
Valiev
,
R. Z.
,
2017
, “
Behavior of the Grade 5 Titanium Alloy in Different Structural States in Conditions of High-Speed Erosion
,”
Procedia Struct. Integr.
,
6
, pp.
190
195
.
23.
Naveed
,
M.
,
Schlag
,
H.
,
König
,
F.
, and
Weiß
,
S.
,
2017
, “
Influence of the Erodent Shape on the Erosion Behavior of Ductile and Brittle Materials
,”
Tribol. Lett.
,
65
(
1
), p.
18
.
24.
Kazarinov
,
N. A.
,
Evstifeev
,
A. D.
,
Petrov
,
Y. V.
,
Atroshenko
,
S. A.
, and
Valiev
,
R. R.
,
2018
, “
The Effect of Grain Refinement on Solid Particle Erosion of Grade 5 Ti Alloy
,”
J. Mater. Eng. Perform.
,
27
(
6
), pp.
3054
3059
.
25.
Mishra
,
A.
,
Pradhan
,
D.
,
Behera
,
C. K.
,
Mohan
,
S.
, and
Mohan
,
A.
,
2019
, “
Effect of Prehot Corrosion on Erosion Behavior of High Chromium Ferritic Steel for Heat Exchangers
,”
ASME J. Tribol.
,
141
(
4
), p.
041607
.
26.
Wang
,
Y. F.
, and
Yang
,
Z. G.
,
2008
, “
Finite Element Model of Erosive Wear on Ductile and Brittle Materials
,”
Wear
,
265
(
5–6
), pp.
871
878
.
27.
Takaffoli
,
M.
, and
Papini
,
M.
,
2012
, “
Numerical Simulation of Solid Particle Impacts on Al6061-T6 Part II: Materials Removal Mechanisms for Impact of Multiple Angular Particles
,”
Wear
,
296
(
1–2
), pp.
648
655
.
28.
Takaffoli
,
M.
, and
Papini
,
M.
,
2012
, “
Numerical Simulation of Solid Particle Impacts on Al6061-T6 Part I: Three-Dimensional Representation of Angular Particles
,”
Wear
,
292–293
(
July
), pp.
100
110
.
29.
Ashrafizadeh
,
H.
, and
Ashrafizadeh
,
F.
,
2012
, “
A Numerical 3D Simulation for Prediction of Wear Caused by Solid Particle Impact
,”
Wear
,
276–277
(
Feb.
), pp.
75
84
.
30.
Azimian
,
M.
,
Schmitt
,
P.
, and
Bart
,
H.
,
2015
, “
Numerical Investigation of Single and Multi Impacts of Angular Particles on Ductile Surfaces
,”
Wear
,
342–343
(
Nov.
), pp.
252
261
.
31.
Dong
,
X.
,
Li
,
Z.
,
Zhang
,
Q.
,
Zeng
,
W.
, and
Liu
,
G. R.
,
2017
, “
Analysis of Surface-Erosion Mechanism Due to Impacts of Freely Rotating Angular Particles Using Smoothed Particle Hydrodynamics Erosion Model
,”
Proc. Inst. Mech. Eng. J
,
231
(
12
), pp.
1537
1551
.
32.
Grewal
,
H. S.
,
Agrawal
,
A.
, and
Singh
,
H.
,
2013
, “
Identifying Erosion Mechanism: A Novel Approach
,”
Tribol. Lett.
,
51
(
1
), pp.
1
7
.
33.
ASTM G76-04
,
2004
,
Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets
,
ASTM International
,
West Conshohocken, PA
.
34.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
35.
Zhao
,
Q.
,
Wu
,
G.
, and
Sha
,
W.
,
2010
, “
Deformation of Titanium Alloy Ti-6Al-4V Under Dynamic Compression
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
516
526
.
36.
Shrot
,
A.
, and
Bäker
,
M.
,
2012
, “
Determination of Johnson-Cook Parameters From Machining Simulations
,”
Comput. Mater. Sci.
,
52
(
1
), pp.
298
304
.
37.
Gambirasio
,
L.
, and
Rizzi
,
E.
,
2016
, “
An Enhanced Johnson-Cook Strength Model for Splitting Strain Rate and Temperature Effects on Lower Yield Stress and Plastic Flow
,”
Comput. Mater. Sci.
,
113
(
Feb.
), pp.
231
265
.
38.
Tabei
,
A.
,
Abed
,
F. H.
,
Voyiadjis
,
G. Z.
, and
Garmestani
,
H.
,
2017
, “
Constitutive Modeling of Ti-6Al-4V at a Wide Range of Temperatures and Strain Rates
,”
Eur. J. Mech.-A/Solids
,
63
(
May–June
), pp.
128
135
.
39.
Zhou
,
T.
,
Wu
,
J.
,
Che
,
J.
,
Wang
,
Y.
, and
Wang
,
X.
,
2017
, “
Dynamic Shear Characteristics of Titanium Alloy Ti-6Al-4V at Large Strain Rates by the Split Hopkinson Pressure Bar Test
,”
Int. J. Impact Eng.
,
109
(
Nov.
), pp.
167
177
.
40.
Banerjee
,
A.
,
Dhar
,
S.
,
Acharyya
,
S.
,
Datta
,
D.
, and
Nayak
,
N.
,
2015
, “
Determination of Johnson Cook Material and Failure Model Constants and Numerical Modelling of Charpy Impact Test of Armour Steel
,”
Mater. Sci. Eng. A
,
640
(
July
), pp.
200
209
.
41.
Wang
,
X.
, and
Shi
,
J.
,
2013
, “
Validation of Johnson-Cook Plasticity and Damage Model Using Impact Experiment
,”
Int. J. Impact Eng.
,
60
(
Oct.
), pp.
67
75
.
42.
Jutras
,
M.
,
2008
, “
Improvement of the Characterisation Method of the Johnson-Cook Model
,”
MSc thesis
,
Faculté des sciences et de ǵenie, Universite Laval
,
Quebec
, Canada.
43.
Cheng
,
B.
, and
Chou
,
K.
,
2013
, “
A Design-of-Experiments Approach to Study Thermal Property Effects on Melt Pool Geometry in Powder-Based EBAM
,”
ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
, p. V02AT02A017.
44.
Karpat
,
Y.
,
2011
, “
Temperature Dependent Flow Softening of Titanium Alloy Ti6Al4V: An Investigation Using Finite Element Simulation of Machining
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
737
749
.
45.
Schwarze
,
C.
,
Darvishi Kamachali
,
R.
,
Kühbach
,
M.
,
Mießen
,
C.
,
Tegeler
,
M.
,
Barrales-Mora
,
L.
,
Steinbach
,
I.
, and
Gottstein
,
G.
,
2018
, “
Computationally Efficient Phase-Field Simulation Studies Using RVE Sampling and Statistical Analysis
,”
Comput. Mater. Sci.
,
147
(
May
), pp.
204
216
.
46.
Seo
,
S.
,
Min
,
O.
, and
Yang
,
H.
,
2005
, “
Constitutive Equation for Ti-6Al-4V at High Temperatures Measured Using the SHPB Technique
,”
Int. J. Impact Eng.
,
31
(
6
), pp.
735
754
.
47.
Bitter
,
J.
,
1963
, “
A Study of Erosion Phenomena Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
48.
Hashish
,
M.
,
1987
, “
An Improved Model of Erosion by Solid Particle Impact
,”
Erosion Liquid Solid Impact, Seventh Int. Conf. Erosion Liquid Solid Impact
,
66
, pp.
1
9
.
49.
Neilson
,
J.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
You do not currently have access to this content.