This work presents a finite element study of a two-dimensional (2D) plane strain fretting model of a half cylinder in contact with a flat block under oscillatory tangential loading. The two bodies are deformable and are set to the same material properties (specifically steel), however, because the results are normalized, they can characterize a range of contact scales (micro to macro), and are applicable for ductile material pairs that behave in an elastic-perfectly plastic manner. Different coefficients of friction (COFs) are used in the interface. This work finds that the edges of the contacting areas experience large von Mises stresses along with significant residual plastic strains, while pileup could also appear there when the COFs are sufficiently large. In addition, junction growth is investigated, showing a magnitude that increases with the COF, while the rate of growth stabilization decreases with the COF. The fretting loop (caused by the tangential force during the fretting motion) for the initial few cycles of loading is generated, and it compares well with reported experimental results. The effects of boundary conditions are also discussed where a prestressed compressed block is found to improve (i.e., reduce) the magnitude of the plastic strain compared to an unstressed block.
Skip Nav Destination
Article navigation
July 2018
Research-Article
An Elastoplastic Finite Element Study of Displacement-Controlled Fretting in a Plane-Strain Cylindrical Contact
Huaidong Yang,
Huaidong Yang
Georgia Institute of Technology,
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: hyang380@gatech.edu
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: hyang380@gatech.edu
Search for other works by this author on:
Itzhak Green
Itzhak Green
Georgia Institute of Technology,
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: green@gatech.edu
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: green@gatech.edu
Search for other works by this author on:
Huaidong Yang
Georgia Institute of Technology,
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: hyang380@gatech.edu
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: hyang380@gatech.edu
Itzhak Green
Georgia Institute of Technology,
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: green@gatech.edu
G. W. Woodruff School of
Mechanical Engineering,
Atlanta, GA 30332-0405
e-mail: green@gatech.edu
Contributed by the Tribology Division of ASME for publication in the JOURNAL OF TRIBOLOGY. Manuscript received October 17, 2017; final manuscript received December 30, 2017; published online February 22, 2018. Assoc. Editor: Sinan Muftu.
J. Tribol. Jul 2018, 140(4): 041401 (11 pages)
Published Online: February 22, 2018
Article history
Received:
October 17, 2017
Revised:
December 30, 2017
Citation
Yang, H., and Green, I. (February 22, 2018). "An Elastoplastic Finite Element Study of Displacement-Controlled Fretting in a Plane-Strain Cylindrical Contact." ASME. J. Tribol. July 2018; 140(4): 041401. https://doi.org/10.1115/1.4038984
Download citation file:
Get Email Alerts
Related Articles
A Coupled Eulerian–Lagrangian Model for Sliding Inception of Elastic–Plastic Spherical Contact
J. Tribol (January,2021)
Research on Wear Behavior Between Crossed Parabolic Cylinders in the Early Stage of Cyclic Fretting
J. Tribol (December,2024)
Analysis of Displacement-Controlled Fretting Between Crossed Parabolic Cylinders in Elasto-Plastic Contacts
J. Tribol (February,2024)
Transient Analysis for Two-Dimensional Chemo-Mechanical Coupled Problem
J. Appl. Mech (July,2021)
Related Chapters
Contact Laws
Contact in Structural Mechanics: A Weighted Residual Approach
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Fatigue Analysis in the Connecting Rod of MF285 Tractor by Finite Element Method
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)