TiAlN and TiSiN coatings were deposited on YT15 cemented carbide using a cathodic arc ion plating (CAIP). The surface-cross section morphologies, chemical elements, surface roughness, phases, and chemical valences of as-obtained coatings were analyzed using a scanning electron microscopy (SEM), energy dispersive spectroscopy, atomic force microscopy (AFM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscopy (XPS), respectively, and the bonding strength, hardness and Young's modulus of TiAlN and TiSiN coatings were measured using a scratch tester and nano-indentation, respectively, and the wear mechanism at high temperatures was also discussed. The results show that the surface roughness of TiAlN and TiSiN coatings is 69.1 and 58.0 nm, respectively, and the corresponding average particle size is 998.8 and 817.2 nm, respectively. The TiAlN coating is composed of TiAlN and AlN, while the TiSiN coating is composed of TiN and Si3N4. The bonding strength of TiAlN and TiSiN coatings is 84.3 and 72.6 N, respectively, the hardness and Young's modulus of TiAlN coating is 23.67 and 415.80 GPa, respectively, while that of TiSiN coating is 20.46 and 350.40 GPa, respectively. The average coefficients of friction (COFs) of TiAlN and TiSiN coatings are 0.4516 and 0.4807, respectively; the corresponding wear rate is 589.7 × 10−6 and 4142.2 × 10−6 mm3 N−1 s−1, respectively; the wear mechanism of TiAlN and TiSiN coatings is oxidation wear and abrasive wear.

References

1.
Barbatti
,
C.
,
Sket
,
F.
,
Garcia
,
J.
, and
Pyzalla
,
A.
,
2006
, “
Influence of Binder Metal and Surface Treatment on the Corrosion Resistance of (W, Ti)C-Based Hard Metals
,”
Surf. Coat. Technol.
,
201
(
6
), pp.
3314
3327
.
2.
Deng
,
J. X.
,
Song
,
W. L.
,
Zhang
,
H.
, and
Zhao
,
J. L.
,
2008
, “
Performance of PVD MoS2/Zr-Coated Carbide in Cutting Processes
,”
Int. J. Mach. Tool. Manu.
,
48
(
14
), pp.
1546
1552
.
3.
Chang
,
C. L.
,
Chen
,
W. C.
,
Tsai
,
P. C.
,
Ho
,
W. Y.
, and
Wang
,
D. Y.
,
2007
, “
Characteristics and Performance of TiSiN/TiAlN Multilayers Coating Synthesized by Cathodic Arc Plasma Evaporation
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
987
992
.
4.
Park
,
I. W.
, and
Kim
,
K. H.
,
2002
, “
Coating Materials of TiN, Ti–Al–N, and Ti–Si–N by Plasma-Enhanced Chemical Vapor Deposition for Mechanical Applications
,”
J. Mater. Process. Technol
,
130–131
(
Suppl. 2
), pp.
254
259
.
5.
Martin
,
P. J.
,
Bendavid
,
A.
,
Cairney
,
J. M.
, and
Hoffman
,
M.
,
2005
, “
Nanocomposite Ti–Si–N, Zr–Si–N, Ti–Al–Si–N, Ti–Al–V–Si–N Thin Film Coatings Deposited by Vacuum Arc Deposition
,”
Surf. Coat.Technol.
,
200
(
7
), pp.
2228
2235
.
6.
Lei
,
Z. F.
,
Liu
,
Y. S.
,
Ma
,
F.
,
Song
,
Z. X.
, and
Li
,
Y. H.
,
2016
, “
Oxidation Resistance of TiAlN/ZrN Multilayer Coatings
,”
Vacuum
,
127
, pp.
22
29
.
7.
Pilloud
,
D.
,
Pierson
,
J. F.
,
Steyer
,
P.
,
Mege
,
A.
,
Stauder
,
B.
, and
Jacquot
,
P.
,
2007
, “
Use of Silane for the Deposition of Hard and Oxidation Resistant Ti–Si–N Coatings by a Hybrid Cathodic Arc and Chemical Vapour Process
,”
Mater. Lett.
,
61
(
11–12
), pp.
2506
2508
.
8.
Gill
,
S. S.
,
Jagdev
,
J.
, and
Singh
,
H.
,
2011
, “
Investigation on Wear Behaviour of Cryogenically Treated TiAlN Coated Tungsten Carbide Inserts in Turning
,”
Int. J. Mach. Tool. Manuf.
,
51
(
1
), pp.
25
33
.
9.
Radhika
,
R.
,
Kumar
,
N.
,
Pandian
,
R.
,
Dash
,
S.
,
Ravindran
,
T. R.
,
Arivuoli
,
D.
, and
Tyagi
,
A. K.
,
2013
, “
Tribological Properties and Deformation Mechanism of TiAlN Coating Sliding With Various Counter Bodies
,”
Tribol. Int.
,
66
(
7
), pp.
143
149
.
10.
Gong
,
M. F.
,
Chen
,
J.
,
Deng
,
X.
, and
Wu
,
S. H.
,
2017
, “
Sliding Wear Behavior of TiAlN and AlCrN Coatings on a Unique Cemented Carbide Substrate
,”
Int. J. Refract. Met. Hard Mater.
,
69
, pp.
209
214
.
11.
Wang
,
C. Y.
,
Xie
,
Y. X.
,
Qin
,
Z.
,
Lin
,
H. S.
,
Yuan
,
Y. H.
, and
Wang
,
Q. M.
,
2015
, “
Wear and Breakage of TiAlN- and TiSiN-Coated Carbide Tools During High–Speed Milling of Hardened Steel
,”
Wear
,
336–337
, pp.
29
42
.
12.
Su
,
G. S.
, and
Liu
,
Z. Q.
,
2012
, “
Wear Characteristics of Nano TiAlN-Coated Carbide Tools in Ultra-High Speed Machining of AerMet100
,”
Wear
,
289
, pp.
124
131
.
13.
Farid
,
M. A.
,
Amir
,
A. Z.
,
Mahmood
,
A.
, and
Mohammad
,
A.
,
2017
, “
Improving the Wear and Corrosion Resistance of Ti–6Al–4V Alloy by Deposition of TiSiN Nanocomposite Coating With Pulsed-DC PACVD
,”
Wear
,
390–391
, pp.
93
103
.
14.
Bouzakis
,
K. D.
,
Skordaris
,
G.
,
Gerardis
,
S.
,
Katirtzoglou
,
G.
,
Makrimallakis
,
S.
,
Pappa
,
M.
,
Lili
,
E.
, and
M'Saoubi
,
R.
,
2009
, “
Ambient and Elevated Temperature Properties of TiN, TiAlN and TiSiN PVD Films and Their Impact on the Cutting Performance of Coated Carbide Tools
,”
Surf. Coat. Technol.
,
204
(
6–7
), pp.
1061
1065
.
15.
Chang
,
C. L.
,
Lin
,
C. T.
,
Tsai
,
P. C.
,
Ho
,
W. Y.
, and
Wang
,
D. Y.
,
2008
, “
Influence of Bias Voltages on the Structure and Wear Properties of TiSiN Coating Synthesized by Cathodic Arc Plasma Evaporation
,”
Thin Solid Films
,
516
(
16
), pp.
5324
5329
.
16.
Kong
,
D. J.
, and
Fu
,
G. Z.
,
2015
, “
Nanoindentation Analysis of TiN, TiAlN and TiAlSiN Coatings Prepared by Cathode Ion Plating
,”
Sci. China Technol. Sci.
,
58
(
8
), pp.
1360
1368
.
17.
Taylor
,
J. A.
,
Lancaster
,
G. M.
,
Ignatiev
,
A.
, and
Rabalais
,
J. W.
,
1978
, “
Interactions of Ion Beams With Surfaces: Reactions of Nitrogen With Silicon and Its Oxides
,”
J. Chem. Phys.
,
68
(
4
), pp.
1776
1784
.
18.
Zhang
,
Y. N.
,
Sahasrabudhe
,
H.
, and
Bandyopadhyay
,
A.
,
2015
, “
Additive Manufacturing of Ti-Si-N Ceramic Coatings on Titanium
,”
Appl. Surf. Sci.
,
346
, pp.
428
437
.
19.
Yuan
,
Y. H.
,
Qin
,
Z.
,
Yu
,
D. H.
,
Wang
,
C. Y.
,
Sui
,
J. B.
,
Lin
,
H. S.
, and
Wang
,
Q. M.
,
2017
, “
Relationship of Microstructure, Mechanical Properties and Hardened Steel Cutting Performance of TiSiN-Based Nanocomposite Coated Tool
,”
J. Manuf. Process.
,
28
(
Pt. 2
), pp.
399
409
.
20.
Kim
,
C. W.
, and
Kim
,
K. H.
,
1997
, “
Anti-Oxidation Properties of TiA1N Film Prepared by Plasma-Assisted Chemical Vapor Deposition and Roles of A1
,”
Thin Solid Films
,
307
(
1–2
), pp.
113
119
.
21.
Asanuma
,
H.
,
Polcik
,
P.
,
Kolozsvari
,
S.
,
Klimashin
,
F. F.
,
Riedl
,
H.
, and
Mayrhofer
,
P. H.
, 2017, “
Cerium Doping of Ti-Al-N Coatings for Excellent Thermal Stability and Oxidation Resistance
,”
Surf. Coat. Technol.
,
326
(Pt. A), pp. 165–172.
22.
Takadoum
,
J.
,
Houmid-Bennani
,
H.
, and
Mairey
,
D.
,
1998
, “
The Wear Characteristics of Silicon Nitride
,”
J. Eur. Ceram. Soc.
,
18
(
5
), pp.
553
556
.
23.
Mcintyre
,
D.
,
Greenne
,
J. E.
,
Hokansson
,
G.
,
Sundgren
,
J. E.
, and
Münz
,
W. D.
,
1990
, “
Oxidation of Metastable Single-Phase Polycrystalline Ti0.5Al0.5N Films: Kinetics and Mechanisms
,”
J. Appl. Phys.
,
67
(
3
), pp.
1542
1553
.
24.
He
,
J. L.
,
Chen
,
C. K.
, and
Hon
,
M. H.
,
1995
, “
Wear of Ti–Si–N Coated Ceramic Cutting Inserts
,”
Wear
,
181–183
(
1
), pp.
189
193
.
25.
Zhang
,
C. H.
,
Lu
,
X. C.
,
Wang
,
H.
,
Luo
,
J. B.
,
Shen
,
Y. G.
, and
Li
,
K. Y.
,
2006
, “
Microstructure, Mechanical Properties, and Oxidation Resistance of Nanocomposite Ti–Si–N Coatings
,”
Appl. Surf. Sci.
,
252
(
18
), pp.
6141
6153
.
26.
Niu
,
R. L.
,
Li
,
J. L.
,
Wang
,
Y. X.
,
Chen
,
J. M.
, and
Xue
,
Q. J.
,
2017
, “
Structure and High Temperature Tribological Behavior of TiAlN/Nitride Duplex Treated Coatings on Ti6Al4V
,”
Surf. Coat. Technol.
,
309
, pp.
232
241
.
27.
Milošev
,
I.
,
Strehblow
,
H. H.
, and
Navingek
,
B.
,
1995
, “
XPS in the Study of High-Temperature Oxidation of CrN and TiN Hard Coatings
,”
Surf. Coat. Technol.
,
74–75
(Pt. 2), pp.
897
902
.
You do not currently have access to this content.