In the current study, a semi-analytical model for contact between a homogeneous, isotropic, linear elastic half-space with a geometrically anisotropic (wavelengths are different in the two principal directions) bisinusoidal surface on the boundary and a rigid base is developed. Two asymptotic loads to area relations for early and almost complete contact are derived. The Hertz elliptic contact theory is applied to approximate the load to area relation in the early contact. The noncontact regions occur in the almost complete contact are treated as mode-I cracks. Since those cracks are in compression, an approximate relation between the load and noncontact area can be obtained by setting the corresponding stress intensity factor (SIF) to zero. These two asymptotic solutions are validated by two different numerical models, namely, the fast Fourier transform (FFT) model and the finite element (FE) model. A piecewise equation is fit to the numerical solutions to bridge these two asymptotic solutions.

References

1.
Westergaard
,
H. M.
,
1939
, “
Bearing Pressure and Cracks
,”
ASME J. Appl. Mech.
,
6
, pp.
49
53
.
2.
Dundurs
,
J.
,
Tsai
,
K. C.
, and
Keer
,
L. M.
,
1973
, “
Contact Between Elastic Bodies With Wavy Surfaces
,”
J. Elast.
,
3
(
2
), pp.
109
115
.10.1007/BF00045817
3.
Manners
,
W.
,
1998
, “
Partial Contact Between Elastic Surfaces With Periodic Profiles
,”
Proc. R. Soc. London, Ser. A
,
454
(1980), pp.
3203
3221
.10.1098/rspa.1998.0298
4.
Johnson
,
K. L.
,
1995
, “
The Adhesion of Two Elastic Bodies With Slightly Wavy Surfaces
,”
Int. J. Solids Struct.
,
32
(
3–4
), pp.
423
430
.10.1016/0020-7683(94)00111-9
5.
Adams
,
G. G.
,
2004
, “
Adhesion at the Wavy Contact Interface Between Two Elastic Bodies
,”
ASME J. Appl. Mech.
,
71
(
6
), pp.
851
856
.10.1115/1.1794702
6.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.10.1016/0021-9797(92)90285-T
7.
Carbone
,
G.
, and
Mangialardi
,
L.
,
2004
, “
Adhesion and Friction of an Elastic Half-Space in Contact With a Slightly Wavy Rigid Surface
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1267
1287
.10.1016/j.jmps.2003.12.001
8.
Block
,
J. M.
, and
Keer
,
L. M.
,
2008
, “
Periodic Contact Problems in Plane Elasticity
,”
J. Mech. Mater. Struct.
,
3
(
7
), pp.
1207
1237
.10.2140/jomms.2008.3.1207
9.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Higginson
,
J. G.
,
1985
, “
The Contact of Elastic Regular Wavy Surfaces
,”
Int. J. Mech. Sci.
,
27
(
6
), pp.
383
396
.10.1016/0020-7403(85)90029-3
10.
Jackson
,
R. L.
, and
Streator
,
J. L.
,
2006
, “
A Multi-Scale Model for Contact Between Rough Surfaces
,”
Wear
,
261
(
11–12
), pp.
1337
1347
.10.1016/j.wear.2006.03.015
11.
Krithivasan
,
V.
, and
Jackson
,
R. L.
,
2007
, “
An Analysis of Three-Dimensional Elasto-Plastic Sinusoidal Contact
,”
Tribol. Lett.
,
27
(
1
), pp.
31
43
.10.1007/s11249-007-9200-6
12.
Jackson
,
R. L.
,
Krithivasan
,
V.
, and
Wilson
,
W. E.
,
2008
, “
The Pressure to Cause Complete Contact Between Elastic Plastic Sinusoidal Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
7
), pp.
857
863
.10.1243/13506501JET429
13.
Rostami
,
A.
, and
Jackson
,
R. L.
,
2013
, “
Predictions of the Average Surface Separation and Stiffness Between Contacting Elastic and Elastic-Plastic Sinusoidal Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
227
(
12
), pp.
1376
1385
.10.1177/1350650113495188
14.
Rostami
,
A.
,
Goedecke
,
A.
,
Mock
,
R.
, and
Jackson
,
R. L.
,
2014
, “
Three-Dimensional Modeling of Elasto-Plastic Sinusoidal Contact Under Time Dependent Deformation Due to Stress Relaxation
,”
Tribol. Int.
,
73
, pp.
25
35
.10.1016/j.triboint.2013.12.020
15.
Yastrebov
,
V. A.
,
Anciaux
,
G.
, and
Molinari
,
J.-F.
,
2014
, “
The Contact of Elastic Regular Wavy Surfaces Revisited
,”
Tribol. Lett.
,
56
(
1
), pp.
171
183
.10.1007/s11249-014-0395-z
16.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
, pp.
95
96
.10.1017/CBO9781139171731
17.
Bueckner
,
H. F.
,
1958
, “
The Propagation of Cracks and the Energy of Elastic Deformation
,”
ASME J. Appl. Mech.
,
80
, pp.
1225
1230
.
18.
Barenblatt
,
G. I.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
19.
Manners
,
W.
, and
Greenwood
,
J. A.
,
2006
, “
Some Observations on Persson’s Diffusion Theory of Elastic Contact
,”
Wear
,
261
(5–6), pp.
600
610
.10.1016/j.wear.2006.01.007
20.
Xu
,
Y.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2014
, “
Statistical Model of Nearly Complete Elastic Rough Surface Contact
,”
Int. J. Solids Struct.
,
51
(
5
), pp.
1075
1088
.10.1016/j.ijsolstr.2013.12.005
21.
Greenwood
,
J. A.
,
2014
, “
On the Almost-Complete Contact of Elastic Rough Surfaces: The Removal of Tensile Patches
,”
Int. J. Solids Struct.
(in press).
22.
Stanley
,
H. M.
, and
Kato
,
T.
,
1997
, “
An FFT-Based Method for Rough Surface Contact
,”
ASME J. Tribol
,
119
(
3
), pp.
481
485
.10.1115/1.2833523
23.
Kalker
,
J. J.
, and
van Randen
,
Y.
,
1972
, “
A Minimum Principle for Frictionless Elastic Contact With Application to Non-Hertzian Half-Space Contact Problems
,”
J. Eng. Math.
,
6
(
2
), pp.
193
206
.10.1007/BF01535102
You do not currently have access to this content.