The Hertzian contact theory is approximated according to a concept by Tanaka (2001, “A New Calculation Method of Hertz Elliptical Contact Pressure,” ASME J. Tribol., 123, pp. 887–889) yielding simple analytical expressions for the elliptical semi-axes, the maximum contact pressure, the mutual approach and the contact spring constant. Several configurations are compared using the exact Hertz theory and the current approximation. The results agree within technical accuracy.

1.
Antoine
,
J. F.
,
Visa
,
C.
,
Sauvey
,
C.
, and
Abba
,
G.
, 2006, “
Approximate Analytical Model for Hertzian Elliptical Contact Problems
,”
ASME J. Tribol.
0742-4787,
128
, pp.
660
664
.
2.
Cooper
,
D. H.
, 1969, “
Hertzian Contact-Stress Deformation Coefficients
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
296
303
.
3.
Fischer
,
F. D.
,
Wiest
,
M.
,
Oberaigner
,
E. R.
,
Blumauer
,
H.
,
Daves
,
W.
, and
Ossberger
,
H.
, 2005, “
The Impact of a Wheel on a Crossing
,”
ZEV Rail Glasers Annalen
,
129
, pp.
336
345
.
4.
Tanaka
,
N.
, 2001, “
A New Calculation Method of Hertz Elliptical Contact Pressure
,”
ASME J. Tribol.
0742-4787,
123
, pp.
887
889
.
5.
Brewe
,
D. E.
, and
Hamrock
,
B. J.
, 1977, “
Simplified Solution for Elliptical-Contact Deformation Between Two Elastic Solids
,”
ASME J. Lubr. Technol.
0022-2305,
99
, pp.
485
487
.
You do not currently have access to this content.