Abstract

An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking Jakobsson, Floberg, and Olsson mass flow preserving cavitation model into account, is introduced based upon the double scale analysis approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation and a macroscopic one. The validity of such a model is verified by numerical experiments both for one-dimensional and two-dimensional roughness patterns.

1.
Christensen
,
D. G.
, and
Tonder
,
K.
, 1971. “
The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
324
330
.
2.
Patir
,
N.
, and
Cheng
,
H. S.
, 1978. “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
0022-2305,
100
, pp.
12
17
.
3.
Siripuram
,
R. B.
, and
Stephens
,
L. S.
, 2004. “
Effect of Deterministic Asperity Geometry on Hydrodynamic Lubrication
,”
ASME J. Tribol.
0742-4787 (in press).
4.
Bayada
,
G.
, and
Faure
,
J.-B.
, 1989. “
A Double-Scale Analysis Approach of the Reynolds Roughness. Comments and Application to the Journal Bearing
,”
ASME J. Tribol.
0742-4787,
111
, pp.
323
330
.
5.
Jai
,
M.
, and
Bou-Saïd
,
B.
, 2002. “
A Comparison of Homogenization and Averaging Techniques for the Treatment of Roughness in Slip-Flow-Modified Reynolds Equation
,”
ASME J. Tribol.
0742-4787,
124
, pp.
327
335
.
6.
Dowson
,
D.
,
Miranda
,
A. A. S.
, and
Taylor
,
C.
, 1984. “
Implementation of an Algorithm Enabling the Determination of Film Rupture and Reformation Boundaries in a Film Bearing
,” in
Proceedings of 10th Leeds-Lyon Symposium of Tribology
,
Butterworths
, U.K., Paper III (ii).
7.
Bayada
,
G.
, and
Chambat
,
M.
, 1986. “
Sur Quelques Modélisations de la Zone de Cavitation en Lubrification Hydrodynamique
,”
J. Mec. Theor. Appl.
0750-7240,
5
(
5
), pp.
703
729
.
8.
Bayada
,
G.
, and
Chambat
,
M.
, 1988. “
New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
110
, pp.
402
407
.
9.
Floberg
,
L.
, and
Jakobsson
,
B.
, 1957. “
The Finite Journal Bearing Considering Vaporization
,” Transactions of Chalmers University of Technology, Gutenberg, Sweden, Vol.
190
.
10.
Olsson
,
K. O.
, 1965. “
Cavitation in Dynamically Loaded Bearing
,” Transactions of Chalmers University of Technology, Guthenberg, Sweden, Vol.
308
.
11.
Elrod
,
H. G.
, and
Adams
,
M. L.
, 1975. “
A Computer Program for Cavitation
,”
Cavitation and related phenomena in lubrication—Proceedings—Mech. Eng. Publ. Ltd.
, pp.
37
42
.
12.
Elrod
,
H. G.
, 1981. “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
350
354
.
13.
Payvar
,
P.
, and
Salant
,
R. F.
, 1992. “
A Computational Method for Cavitation in a Wavy Mechanical Seal
,”
ASME J. Tribol.
0742-4787,
114
, pp.
119
204
.
14.
Brewe
,
D. E.
, 1986. “
Theoretical Modeling of Vapor Cavitation in Dynamically Loaded Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
108
, pp.
628
638
.
15.
Vijayaraghavan
,
D.
, and
Keith
,
T. G.
, 1990. “
An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,”
ASME J. Tribol.
0742-4787,
112
, pp.
44
51
.
16.
Kistler
,
A. L.
,
Cheng
,
H. S.
,
Nivatvongs
,
K.
, and
Ozakat
,
I.
, 1980. “
Cavitation Phenomenon in Face Seals
,” ONR Contract N00014-79-0007.
17.
Harp
,
S. H.
, and
Salant
,
R. F.
, 2001. “
An Average Flow Model of Rough Surface Lubrication with Inter-Asperity Cavitation
,”
ASME J. Tribol.
0742-4787,
123
, pp.
134
143
.
18.
Kumar
,
A.
, and
Booker
,
J. F.
, 1991. “
A Finite Element Cavitation Algorithm
,”
ASME J. Tribol.
0742-4787,
113
(
2
), pp.
276
286
.
19.
Shi
,
F.
, and
Salant
,
R. F.
, 2000. “
A Mixed Soft Elastohydrodynamic Lubrication Model with Interasperity Cavitation and Surface Shear Deformation
,”
ASME J. Tribol.
0742-4787,
122
, pp.
308
316
.
20.
Bayada
,
G.
,
Martin
,
S.
, and
Vázquez
,
C.
, 2005. “
Effects d’Anisotropic par Homogénéisation dans un Problème à Frontière Libre
,”
C. R. Acad. Sci., Ser. I: Math.
0764-4442,
340
(
7
), pp.
541
546
.
21.
Hooke
,
C. J.
, 1998. “
The Behaviour of Low-Amplitude Surface Roughness under Line Contacts
,”
Proc. Inst. Mech. Eng.
0020-3483,
213
, pp.
275
285
.
22.
Bayada
,
G.
,
Chambat
,
M.
, and
Vázquez
,
C.
, 1998. “
Characteristics Method for the Formulation and Computation of a Free Boundary Cavitation Problem
,”
J. Comput. Appl. Math.
0377-0427,
98
(
2
), pp.
191
212
.
23.
Buscaglia
,
G.
, and
Jai
,
M.
, 2004. “
Homogenization of the Generalized Reynolds Equation for Ultra-Thin Gas Films and Its Resolution by FEM
,”
ASME J. Tribol.
0742-4787,
126
, pp.
547
552
.
You do not currently have access to this content.