Abstract
An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking Jakobsson, Floberg, and Olsson mass flow preserving cavitation model into account, is introduced based upon the double scale analysis approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation and a macroscopic one. The validity of such a model is verified by numerical experiments both for one-dimensional and two-dimensional roughness patterns.
Issue Section:
Research Papers
1.
Christensen
, D. G.
, and Tonder
, K.
, 1971. “The Hydrodynamic Lubrication of Rough Bearing Surfaces of Finite Width
,” ASME J. Lubr. Technol.
0022-2305, 93
, pp. 324
–330
.2.
Patir
, N.
, and Cheng
, H. S.
, 1978. “An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,” ASME J. Lubr. Technol.
0022-2305, 100
, pp. 12
–17
.3.
Siripuram
, R. B.
, and Stephens
, L. S.
, 2004. “Effect of Deterministic Asperity Geometry on Hydrodynamic Lubrication
,” ASME J. Tribol.
0742-4787 (in press).4.
Bayada
, G.
, and Faure
, J.-B.
, 1989. “A Double-Scale Analysis Approach of the Reynolds Roughness. Comments and Application to the Journal Bearing
,” ASME J. Tribol.
0742-4787, 111
, pp. 323
–330
.5.
Jai
, M.
, and Bou-Saïd
, B.
, 2002. “A Comparison of Homogenization and Averaging Techniques for the Treatment of Roughness in Slip-Flow-Modified Reynolds Equation
,” ASME J. Tribol.
0742-4787, 124
, pp. 327
–335
.6.
Dowson
, D.
, Miranda
, A. A. S.
, and Taylor
, C.
, 1984. “Implementation of an Algorithm Enabling the Determination of Film Rupture and Reformation Boundaries in a Film Bearing
,” in Proceedings of 10th Leeds-Lyon Symposium of Tribology
, Butterworths
, U.K., Paper III (ii).7.
Bayada
, G.
, and Chambat
, M.
, 1986. “Sur Quelques Modélisations de la Zone de Cavitation en Lubrification Hydrodynamique
,” J. Mec. Theor. Appl.
0750-7240, 5
(5
), pp. 703
–729
.8.
Bayada
, G.
, and Chambat
, M.
, 1988. “New Models in the Theory of the Hydrodynamic Lubrication of Rough Surfaces
,” ASME J. Tribol.
0742-4787, 110
, pp. 402
–407
.9.
Floberg
, L.
, and Jakobsson
, B.
, 1957. “The Finite Journal Bearing Considering Vaporization
,” Transactions of Chalmers University of Technology, Gutenberg, Sweden, Vol. 190
.10.
Olsson
, K. O.
, 1965. “Cavitation in Dynamically Loaded Bearing
,” Transactions of Chalmers University of Technology, Guthenberg, Sweden, Vol. 308
.11.
Elrod
, H. G.
, and Adams
, M. L.
, 1975. “A Computer Program for Cavitation
,” Cavitation and related phenomena in lubrication—Proceedings—Mech. Eng. Publ. Ltd.
, pp. 37
–42
.12.
Elrod
, H. G.
, 1981. “A Cavitation Algorithm
,” ASME J. Lubr. Technol.
0022-2305, 103
, pp. 350
–354
.13.
Payvar
, P.
, and Salant
, R. F.
, 1992. “A Computational Method for Cavitation in a Wavy Mechanical Seal
,” ASME J. Tribol.
0742-4787, 114
, pp. 119
–204
.14.
Brewe
, D. E.
, 1986. “Theoretical Modeling of Vapor Cavitation in Dynamically Loaded Journal Bearings
,” ASME J. Lubr. Technol.
0022-2305, 108
, pp. 628
–638
.15.
Vijayaraghavan
, D.
, and Keith
, T. G.
, 1990. “An Efficient, Robust, and Time Accurate Numerical Scheme Applied to a Cavitation Algorithm
,” ASME J. Tribol.
0742-4787, 112
, pp. 44
–51
.16.
Kistler
, A. L.
, Cheng
, H. S.
, Nivatvongs
, K.
, and Ozakat
, I.
, 1980. “Cavitation Phenomenon in Face Seals
,” ONR Contract N00014-79-0007.17.
Harp
, S. H.
, and Salant
, R. F.
, 2001. “An Average Flow Model of Rough Surface Lubrication with Inter-Asperity Cavitation
,” ASME J. Tribol.
0742-4787, 123
, pp. 134
–143
.18.
Kumar
, A.
, and Booker
, J. F.
, 1991. “A Finite Element Cavitation Algorithm
,” ASME J. Tribol.
0742-4787, 113
(2
), pp. 276
–286
.19.
Shi
, F.
, and Salant
, R. F.
, 2000. “A Mixed Soft Elastohydrodynamic Lubrication Model with Interasperity Cavitation and Surface Shear Deformation
,” ASME J. Tribol.
0742-4787, 122
, pp. 308
–316
.20.
Bayada
, G.
, Martin
, S.
, and Vázquez
, C.
, 2005. “Effects d’Anisotropic par Homogénéisation dans un Problème à Frontière Libre
,” C. R. Acad. Sci., Ser. I: Math.
0764-4442, 340
(7
), pp. 541
–546
.21.
Hooke
, C. J.
, 1998. “The Behaviour of Low-Amplitude Surface Roughness under Line Contacts
,” Proc. Inst. Mech. Eng.
0020-3483, 213
, pp. 275
–285
.22.
Bayada
, G.
, Chambat
, M.
, and Vázquez
, C.
, 1998. “Characteristics Method for the Formulation and Computation of a Free Boundary Cavitation Problem
,” J. Comput. Appl. Math.
0377-0427, 98
(2
), pp. 191
–212
.23.
Buscaglia
, G.
, and Jai
, M.
, 2004. “Homogenization of the Generalized Reynolds Equation for Ultra-Thin Gas Films and Its Resolution by FEM
,” ASME J. Tribol.
0742-4787, 126
, pp. 547
–552
.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.