The present work is aimed at examining the ability of different models in predicting soot formation in “Delft flame III,” which is a nonpremixed pilot stabilized natural gas flame. The turbulence–chemistry interactions are modeled using a steady laminar flamelet model (SLFM). One-step and two-step models are used to describe the formation, growth, and oxidation of soot particles. One-step is an empirical model which solves the soot mass fraction equation. The two-step models are semi-empirical models, where the soot formation is modeled by solving the governing transport equations for the soot mass fraction and normalized radical nuclei concentration. The effect of radiative heat transfer due to gas and soot particulates is included using P1 approximation. The absorption coefficient of the mixture is modeled using the weighted sum of gray gases model (WSGGM). The turbulence–chemistry interaction effects on soot formation are studied using a single-variable probability density function (PDF) in terms of a normalized temperature or mixture fraction. The results shown in this work clearly elucidate the effect of radiation and turbulence–chemistry interaction on soot formation. The soot volume fraction decreases with the introduction of radiation interactions, which is consistence with the theoretical predictions. It has also been observed in the current work that the soot volume fraction is sensitive to the variable used in the PDF to incorporate the turbulence interactions.

References

1.
Haynes
,
B. S.
, and
Wagner
,
H. G.
,
1981
, “
Soot Formation
,”
Prog. Energy Combust. Sci.
,
7
(
4
), pp.
229
273
.10.1016/0360-1285(81)90001-0
2.
Kennedy
,
I. M.
,
1997
, “
Models of Soot Formation and Oxidation
,”
Prog. Energy Combust. Sci.
,
23
(2), pp.
95
132
.10.1016/S0360-1285(97)00007-5
3.
Bockhorn
,
H. E.
,
1994
,
Soot Formation in Combustion
,
Springer-Verlag
,
Heidelberg, Germany
.
4.
Frenklach
,
M.
, and
Wang
,
H.
,
1990
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
23rd Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1559
1566
.
5.
Saxena
,
V.
, and
Pope
,
S. B.
,
1998
, “
PDF Calculations of Major and Minor Species in a Turbulent Piloted Jet Flame
,”
27th Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1081
1086
.
6.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
(1–2), pp.
26
40
.10.1016/S0010-2180(97)00278-2
7.
Bisetti
,
F.
,
Blanquart
,
G.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
On the Formation and Early Evolution of Soot in Turbulent Non-Premixed Flames
,”
Combust. Flame
,
159
(
1
), pp.
317
335
.10.1016/j.combustflame.2011.05.021
8.
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2012
, “
LES Model for Sooting Turbulent Non-Premixed Flames
,”
Combust. Flame
,
159
(
6
), pp.
2166
2180
10.1016/j.combustflame.2012.02.001.
9.
Qamar
,
N. H.
,
Alwahabi
,
Z. T.
,
Chan
,
Q. N.
,
Nathan
,
G. J.
,
Roekaerts
,
D.
, and
King
,
K. D.
,
2009
, “
Soot Volume Fraction in a Piloted Turbulent Jet Non-Premixed Flame of Natural Gas
,”
Combust. Flame
,
156
(
7
), pp.
1339
1347
.10.1016/j.combustflame.2009.02.011
10.
Bray
,
K. N.
, and
Peters
,
N.
,
1994
, “
Laminar Flamelets in Turbulent Flames
,”
Turbulent Reacting Flows
,
P. A.
Libby
, and
F. A.
Williams
, eds.,
Academic Press
,
San Diego, CA
, pp.
63
114
.
11.
Dixon-Lewis
,
D.
,
1990
, “
Structure of Laminar Flames
,”
23rd Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
305
324
.
12.
Peters
,
N.
,
1986
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
21st Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1231
1250
.
13.
Binniger
,
B.
,
Chan
,
M.
,
Paczkko
,
G.
, and
Herrmann
,
M.
,
1998
, “
Numerical Simulation of Turbulent Partially Premixed Hydrogen Flames With the Flamelet Model
,” Advanced Combustion GmbH, Internal Technical Report.
14.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
15.
Muller
,
C. M.
,
Breitbach
,
H.
, and
Peters
,
N.
,
1994
, “
Partially Premixed Turbulent Flame Propagation in Jet Flames
,”
25th Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1099
1106
.
16.
Yadav
,
R.
,
Kushari
,
A.
,
Verma
,
A. K.
, and
Eswaran
,
V.
,
2013
, “
Weighted Sum of Gray Gas Modeling for Nongray Radiation in Combustion Environment Using the Hybrid Solution Methodology
,”
Numer. Heat Transfer, Part B
,
64
(
2
), pp.
172
197
10.1080/10407790.2013.784147.
17.
Siegel
,
R.
, and
Howell
,
J. R.
,
1992
,
Thermal Radiation Heat Transfer
,
Hemisphere
,
Washington, DC
.
18.
Khan
,
I. M.
, and
Greeves
,
G.
,
1974
, “
A Method for Calculating the Formation and Combustion of Soot in Diesel Engines
,”
Heat Transfer in Flames
,
N. H.
Afgan
, and
J. M.
Beer
, eds.,
Scripta
,
Washington, DC
, Chap. 25.
19.
Tesner
,
P. A.
,
Snegiriova
,
T. D.
, and
Knorre
,
V. G.
,
1971
, “
Kinetics of Dispersed Carbon Formation
,”
Combust. Flame
,
17
(2), pp.
253
260
.10.1016/S0010-2180(71)80168-2
20.
Brookes
,
S. J.
, and
Moss
,
J. B.
,
1999
, “
Prediction of Soot and Thermal Radiation in Confined Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
116
(
4
), pp.
486
503
.10.1016/S0010-2180(98)00056-X
21.
Singhal
,
A. K.
,
Li
,
H. Y.
,
Athavale
,
M. M.
, and
Jiang
,
Y.
,
2001
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME
Paper No. FEDSM2001-18015. 10.1115/FEDSM2001-18015
22.
Missaghi
,
M.
,
1987
, “
Mathematical Modeling of Chemical Sources in Turbulent Combustion
,” Ph.D. thesis, The University of Leeds, Leeds, UK.
23.
Ansys
,
2010
,
Ansys Fluent 13.0 User's Guide
,
Ansys, Inc.
,
Canonsburg, PA
.
24.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
25.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J. A.
,
1995
, “
New-Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
26.
Gibson
,
M. M.
, and
Launder
,
B. E.
,
1978
, “
Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer
,”
J. Fluid Mech.
,
86
(
Pt. 3
), pp.
491
511
.10.1017/S0022112078001251
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Zhiwei
,
Q.
, “
GRI-Mech
,” http://www.me.berkeley.edu/gri_mech/
28.
“TNF Workshop Abstract,” http://www.sandia.gov/TNF
29.
Peeters
,
T. W. J.
,
Stroomer
,
P. P. J.
,
Devries
,
J. E.
,
Roekaerts
,
D. J. E. M.
, and
Hoogendoorn
,
C. J.
,
1994
, “
Comparative Experimental and Numerical Investigation of a Piloted Turbulent Natural-Gas Diffusion Flame
,”
25th International Symposium on Combustion
, The Combustion Institute, Pittsburgh, PA, pp.
1241
1248
.
30.
Naud
,
B.
,
Jimenez
,
C.
,
Merci
,
B.
, and
Roekaerts
,
D.
,
2007
, “
Transported PDF Calculations of the Piloted Jet Diffusion Flame ‘Delft Flame III’ With Complex Chemistry: Study of the Pilot flame Model
,”
2nd ECCOMAS Thematic Conference on Computational Combustion
, Delft, The Netherlands, July 18–20, pp.
1
20
.
31.
Yadav
,
R.
,
Kushari
,
A.
,
Eswaran
,
V.
, and
Verma
,
A. K.
,
2013
, “
A Numerical Investigation of the Eulerian PDF Transport Approach for Modeling of Turbulent Non-Premixed Pilot Stabilized Flames
,”
Combust. Flame
,
160
(
3
), pp.
618
634
.10.1016/j.combustflame.2012.11.010
32.
Habibi
,
A.
,
Merci
,
B.
, and
Roekaerts
,
D.
,
2007
, “
Turbulence Radiation Interaction in Reynolds-Averaged Navier–Stokes Simulations of on Premixed Piloted Turbulent Laboratory-Scale Flames
,”
Combust. Flame
,
151
(
1–2
), pp.
303
320
.10.1016/j.combustflame.2007.06.003
33.
Nooren
,
P. A.
,
Versluis
,
M.
,
van der Meer
,
T. H.
,
Barlow
,
R. S.
, and
Frank
,
J. H.
,
2000
, “
Raman–Rayleigh-LIF Measurements of Temperature and Species Concentrations in the Delft Piloted Turbulent Jet Diffusion Flame
,”
Appl. Phys., B
,
71
(
1
), pp.
95
111
.10.1007/s003400000278
34.
Lee
,
K. B.
,
Thring
,
M. W.
, and
Beer
,
J. M.
,
1962
, “
On the Rate of Combustion of Soot in a Laminar Soot Flame
,”
Combust. Flame
,
6
, pp.
137
145
.10.1016/0010-2180(62)90082-2
35.
Fenimore
,
C. P.
, and
Jones
,
G. W.
,
1967
, “
Oxidation of Soot by Hydroxyl Radicals
,”
J. Phys. Chem.
,
71
(
3
), pp.
593
597
.10.1021/j100862a021
36.
Donde
,
P.
,
Raman
,
V.
,
Mueller
,
M. E.
, and
Pitsch
,
H.
,
2013
, “
LES/PDF Based Modeling of Soot–Turbulence Interactions in Turbulent Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1183
1192
.10.1016/j.proci.2012.07.055
37.
Rune
,
N. K.
,
2005
, “
Modeling of Soot Formation and Oxidation in Turbulent Diffusion Flames
,” Ph.D. thesis, Norwegian University of Science and Technology, Trondheim, Norway.
You do not currently have access to this content.