The demand for more fuel efficient vehicles has been growing steadily and will only continue to increase given the volatility in the commodities market for petroleum resources. The internal combustion (IC) engine utilizes approximately one third of the chemical energy released during combustion. The remaining two-thirds are rejected from the engine via the cooling and exhaust systems. Significant improvements in fuel conversion efficiency are possible through the capture and conversion of these waste energy streams. Promising waste heat recovery (WHR) techniques include turbocharging, turbo compounding, Rankine engine compounding, and thermoelectric (TE) generators. These techniques have shown increases in engine thermal efficiencies that range from 2% to 20%, depending on system design, quality of energy recovery, component efficiency, and implementation. The purpose of this paper is to provide a broad review of the advancements in the waste heat recovery methods; thermoelectric generators (TEG) and Rankine cycles for electricity generation, which have occurred over the past 10 yr as these two techniques have been at the forefront of current research for their untapped potential. The various mechanisms and techniques, including thermodynamic analysis, employed in the design of a waste heat recovery system are discussed.

References

1.
Chammas
,
R. E.
, and
Clodic
,
D.
,
2005
, “
Combined Cycle for Hybrid Vehicles
,” Technical Report No. 2005-01-1171.
2.
Yu
,
C.
, and
Chau
,
K.
,
2009
, “
Thermoelectric Automotive Waste Heat Energy Recovery Using Maximum Power Point Tracking
,”
Energy Conv. Manage.
,
50
, pp.
1506
1512
.10.1016/j.enconman.2009.02.015
3.
Yang
,
J.
, and
Stabler
,
F. R.
,
2009
, “
Automotive Applications of Thermoelectric Materials
,”
J. Elec. Materials
,
38
, pp.
1245
1251
.10.1007/s11664-009-0680-z
4.
Hatzikraniotis
,
E.
,
Zorbas
,
K. T.
,
Samaras
,
I.
,
Kyratsi
,
T. H.
, and
Paraskevopoulos
,
K. M.
,
2009
, “
Efficiency Study of a Commercial Thermoelectric Power Generator Teg Under Thermal Cycling
,”
J. Elec. Materials
,
39
, pp.
2112
2116
.10.1007/s11664-009-0988-8
5.
Crane
,
D. T.
, and
Jackson
,
G. S.
,
2004
, “
Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery
,”
Energy Conv. Manage.
,
45
, pp.
1565
1582
.10.1016/j.enconman.2003.09.003
6.
Ringler
,
J.
,
Seifert
,
M.
,
Guyotot
,
V.
, and
Hubner
,
W.
,
2009
, “
Rankine Cycle for Waste Heat Recovery of IC Engines
,” Technical Report No. 2009-01-0174.
7.
Stobart
,
R.
, and
Milner
,
D.
,
2009
, “
The Potential for Thermo-Electric Regeneration of Energy in Vehicles
,” Technical Report No. 2009-01-1333.
8.
Mori
,
M.
,
Yamagami
,
T.
,
Oda
,
N.
,
Hattori
,
M.
,
Sorazawa
,
M.
, and
Haraguchi
,
T.
,
2009
, “
Current Possibilities of Thermoelectric Technology Relative to Fuel Economy
,” Technical Report No. 2009-01-0170.
9.
Rowe
,
D.
,
2006
,
Thermoelectrics Handbook: Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
10.
Headings
,
L. M.
,
Midlam-Mohler
,
S.
,
Washington
,
G. N.
, and
Heremans
,
J. P.
,
2008
, “
High Temperature Thermoelectric Auxiliary Power Unit for Automotive Applications
,” ASME 2008 Conference on Smart Materials, Adaptive Structures & Intelligent Systems, October 28–30, Ellicott City, MD, Paper No. SMASIS2008-610.
11.
LaManna
,
J.
,
Ortiz
,
D.
,
Livelli
,
M.
,
Haas
,
S.
,
Chikwem
,
C.
,
Ray
,
B.
, and
Stevens
,
R.
,
2008
, “
Feasibility of Thermoelectric Waste Heat Recovery in Large Scale Systems
,” Technical Report No. IMECE2008-68676, Oct. 31–Nov. 6.
12.
Srinivasan
,
M.
, and
Praslad
,
S. M.
,
2005
, “
Advanced Thermoelectric Energy Recovery System in Light Duty and Heavy Duty Vehicles: Analysis on Technical and Marketing Challenges
,”
International Conference on Power Electronics and Drives Systems, PEDS 2005
, Vol.
2
, pp.
977
982
.
13.
Saqr
,
K. M.
,
Mansour
,
M. K.
, and
Musa
,
M. N.
,
2008
, “
Thermal Design of Automobile Exhaust Based Thermoelectric Generators: Objectives and Challenges
,”
Int. J. Auto. Technol.
,
9
, pp.
155
160
.10.1007/s12239-008-0020-y
14.
Hung
,
T. C.
,
Shai
,
T. Y.
, and
Wang
,
S. K.
,
1997
, “
A Review of Organic Rankine Cycles (ORCs) for the Recovery of Low-Grade Waste Heat
,”
Energy
,
22
, pp.
661
667
.10.1016/S0360-5442(96)00165-X
15.
Liu
,
B.-T.
,
Chien
,
K.-H.
, and
Wang
,
C.-C.
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
, pp.
1207
1217
.10.1016/j.energy.2004.01.004
16.
Schuster
,
A.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Spliethoff
,
H.
,
2009
, “
Energetic and Economic Investigation of Organic Rankine Cycle Applications
,”
App. Thermal Eng.
,
29
, pp.
1809
1817
.10.1016/j.applthermaleng.2008.08.016
17.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
, p.
012401
.10.1115/1.3066392
18.
Crane
,
D. T.
,
Jackson
,
G. S.
, and
Holloway
,
D.
,
2001
, “
Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics
,” SAE Technical Paper, Technical Report No. 2001-01-1021.
19.
Wojciechowski
,
K. T.
,
Schhmidt
,
M.
,
Zybala
,
R.
,
Merkisz
,
J.
,
Fuc
,
P.
, and
Lijewski
,
P.
,
2009
, “
Comparison of Waste Heat Recovery From the Exhaust of a Spark Ignition and a Diesel Engine
,”
J. Elec. Materials
,
39
, p.
2034
2038
.10.1007/s11664-009-1010-1
20.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2006
, “
Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle
,” Technical Report No. 2006-01-3522.
21.
Smith
,
K.
, and
Thornton
,
M.
,
2009
, “
Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles
,” Technical Report, National Renewable Energy Laboratory, Paper No. NREL/TP-540-44247.
22.
Yang
,
J.
,
2005
, “
Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry
,” ICT 2005,
24th International Conference on Thermoelectrics
, June 19–23, Clemson, SC.10.1109/ICT.2005.1519911
23.
Hussain
,
Q. E.
,
Brigham
,
D. R.
, and
Maranville
,
C. W.
,
2009
, “
Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles
,” Technical Report No. 2009-01-1327.
24.
Arias
,
D. A.
,
Shedd
,
T. A.
, and
Jester
,
R. K.
,
2006
, “
Theoretical Analysis of Waste Heat Recovery From an Internal Combustion Engine in a Hybrid Vehicle
,” Technical Report No. 2006-01-1605.
25.
Teng
,
H.
,
Regner
,
G.
, and
Cowland
,
C.
,
2007
, “
Waste Heat Recovery of Heavy-Duty Diesel Engines by Organic Rankine Cycle Part I: Hybrid Energy System of Diesel and Rankine Engines
,” Technical Report No. 2007-01-0537.
26.
Mago
,
P. J.
,
Srinivasan
,
K. K.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
,
2008
, “
An Examination of Exergy Destruction in Organic Rankine Cycles
,”
Int. J. Energy Res.
,
32
, pp.
926
938
.10.1002/er.1406
You do not currently have access to this content.