Abstract

External heat flux often induces deformation or vibration in space structures comprised of thin-walled tubes. Efficient and real-time thermal-structural dynamic analysis is essential for the reliable operation and optimal design of such a structure. However, traditional finite element method (FEM) requires a significant amount of time for thermal-structural dynamic analysis of the complex space structure. The present work proposes a multi-boundary condition physics-informed neural network (mb-PINN) to address the thermal governing equation (TGE) of thin-walled tubes under different incident angles of heat flux. Specifically, the proposed mb-PINN constructs an independent neural network to fit the mapping relationship between incident angle and boundary condition. The variable boundary condition is then integrated into PINN by taking the incident angle as a feature input of PINN. Moreover, a dynamic sampling method is further incorporated into mb-PINN, which reallocates sampling points to improve the accuracy of the approximate solution of TGE. The thermal structural behavior of the tube under different incident angles of heat flux can therefore be predicted quickly and accurately, offering an efficient solution for the thermal-structural dynamic analysis of space structure.

References

1.
Thornton
,
E. A.
, and
Paul
,
D. B.
,
1985
, “
Thermal-Structural Analysis of Large Space Structures – An Assessment of Recent Advances
,”
J. Spacecr. Rockets
,
22
(
4
), pp.
385
393
.
2.
Foster
,
R. S.
,
1998
,
Thermally Induced Vibrations of Spacecraft Booms
,
University of Virginia
,
Charlottesville, VA
.
3.
Thornton
,
E. A.
, and
Kim
,
Y. A.
,
1993
, “
Thermally Induced Bending Vibrations of a Flexible Rolled-up Solar Array
,”
J. Spacecr. Rockets
,
30
(
4
), pp.
438
448
.
4.
Liu
,
L.
,
Cao
,
D.
,
Huang
,
H.
,
Shao
,
C.
, and
Xu
,
Y.
,
2017
, “
Thermal-Structural Analysis for an Attitude Maneuvering Flexible Spacecraft Under Solar Radiation
,”
Int. J. Mech. Sci.
,
126
, pp.
161
170
.
5.
Namburu
,
R.
, and
Tamma
,
K.
,
1991
, “
Thermally-Induced Structural Dynamic Response of Flexural Configurations Influenced by Linear/Non-Linear Thermal Effects
,”
32nd Structures, Structural Dynamics, and Materials Conference
,
Baltimore, MD
,
Apr. 8–10
.
6.
Xue
,
M.
, and
Ding
,
Y.
,
2004
, “
Two Kinds of Tube Elements for Transient Thermal–Structural Analysis of Large Space Structures
,”
Int. J. Numer. Methods Eng.
,
59
(
10
), pp.
1335
1353
.
7.
Rand
,
O.
, and
Givoli
,
D.
,
1992
, “
Thermal Analysis of Space Trusses Including Three-Dimensional Effects
,”
Int. J. Numer. Methods Heat Fluid Flow
,
2
(
2
), pp.
115
125
.
8.
Ding
,
Y.
,
Xue
,
M.
, and
Kim
,
J.-K.
,
2005
, “
Thermo-Structural Analysis of Space Structures Using Fourier Tube Elements
,”
Comput. Mech.
,
36
(
4
), pp.
289
297
.
9.
Wang
,
J.
,
Jin
,
D.
,
Fan
,
C.
,
Bi
,
Y.
,
Su
,
X.
,
Liu
,
G.
, and
Xiang
,
Z.
,
2022
, “
Predicting the On-Orbit Thermally Induced Vibration Through the Integrated Numerical and Experimental Approach
,”
Acta Astronaut.
,
192
, pp.
341
350
.
10.
Lefik
,
M.
, and
Schrefler
,
B. A.
,
2003
, “
Artificial Neural Network as an Incremental Non-Linear Constitutive Model for a Finite Element Code
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
28
), pp.
3265
3283
.
11.
Oneto
,
L.
,
Navarin
,
N.
, and
Schleif
,
F.-M.
,
2022
, “
Advances in Artificial Neural Networks, Machine Learning and Computational Intelligence
,”
Neurocomputing
,
507
, pp.
311
314
.
12.
Dele-Afolabi
,
T. T.
,
Mohamed Ariff
,
A. H.
,
Ojo-Kupoluyi
,
O. J.
, and
Atoyebi
,
E. O.
,
2023
, “Application of Neural Networks and Artificial Intelligence Tools for Modelling, Characterization, and Forecasting in Materials Engineering,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
,
New York
, pp.
44
55
.
13.
Bazgir
,
A.
, and
Zhang
,
Y.
,
2024
, “
Harnessing Deep Learning to Solve Inverse Transient Heat Transfer With Periodic Boundary Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121001
.
14.
Zhang
,
J.
, and
Xue
,
X.
,
2024
, “
Mechanical Properties Prediction and Design of Curved Beams by Neural Network
,”
Thin-Walled Struct.
,
195
, p.
111434
.
15.
Fetene
,
M. G.
,
Dolla
,
D. A.
,
Wang
,
C.-C.
,
Varkey
,
J. K.
,
Chavan
,
S.
, and
Kim
,
S. C.
,
2024
, “
Experimental Exploration of Cellulose Material for Battery Separators and Artificial Neural Network-Driven Predictive Modeling for Enhanced Thermal Safety in Electric Vehicles
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
10
), p.
101005
.
16.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations,” CoRR, abs/1711.10561. http://arxiv.org/abs/1711.10561
17.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2017
, “Physics Informed Deep Learning (Part II): Data-Driven Discovery of Nonlinear Partial Differential Equations.”
18.
Samaniego
,
E.
,
Anitescu
,
C.
,
Goswami
,
S.
,
Nguyen-Thanh
,
V. M.
,
Guo
,
H.
,
Hamdia
,
K.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2020
, “
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
362
, p.
112790
.
19.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2018
, “Automatic Differentiation in Machine Learning: A Survey.”
20.
Cai
,
S.
,
Mao
,
Z.
,
Wang
,
Z.
,
Yin
,
M.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Fluid Mechanics: A Review
,”
Acta Mech. Sin.
,
37
(
12
), pp.
1727
1738
.
21.
Wu
,
J.-L.
,
Xiao
,
H.
, and
Paterson
,
E.
,
2018
, “
Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Comprehensive Framework
,”
Phys. Rev. Fluids
,
3
(
7
), p.
074602
.
22.
Zhao
,
Y.
,
Guo
,
L.
, and
Wong
,
P. P. L.
,
2023
, “
Application of Physics-Informed Neural Network in the Analysis of Hydrodynamic Lubrication
,”
Friction
,
11
(
7
), pp.
1253
1264
.
23.
Jin
,
X.
,
Cai
,
S.
,
Li
,
H.
, and
Karniadakis
,
G. E.
,
2021
, “
NSFnets (Navier-Stokes Flow Nets): Physics-Informed Neural Networks for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
426
, p.
109951
.
24.
Gu
,
W.
,
Primatesta
,
S.
, and
Rizzo
,
A.
,
2024
, “
Physics-Informed Neural Network for Quadrotor Dynamical Modeling
,”
Robot. Auton. Syst.
,
171
, p.
104569
.
25.
He
,
Z.
,
Ni
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2021
, “
A Physics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials
,”
Mater. Today Commun.
,
28
, p.
102719
.
26.
Chen
,
D.
,
Li
,
Y.
,
Liu
,
K.
, and
Li
,
Y.
,
2023
, “
A Physics-Informed Neural Network Approach to Fatigue Life Prediction Using Small Quantity of Samples
,”
Int. J. Fatigue
,
166
, p.
107270
.
27.
Chen
,
Z.
,
Lai
,
S.-K.
, and
Yang
,
Z.
,
2023
, “
AT-PINN: Advanced Time-Marching Physics-Informed Neural Network for Structural Vibration Analysis
,”
Thin-Walled Struct.
,
196
, p.
111423
.
28.
Trinh
,
D. T. N.
,
Luong
,
K. A.
, and
Lee
,
J.
,
2024
, “
An Analysis of Functionally Graded Thin-Walled Beams Using Physics-Informed Neural Networks
,”
Eng. Struct.
,
301
, p.
117290
.
29.
Kabasi
,
S.
,
Marbaniang
,
A. L.
, and
Ghosh
,
S.
,
2024
, “
Form-Finding of Tensile Membrane Structures with Strut and Anchorage Supports Using Physics-Informed Machine Learning
,”
Eng. Struct.
,
299
, p.
117093
.
30.
Wei
,
Y.
,
Serra
,
Q.
,
Lubineau
,
G.
, and
Florentin
,
E.
,
2023
, “
Coupling Physics-Informed Neural Networks and Constitutive Relation Error Concept to Solve a Parameter Identification Problem
,”
Comput. Struct.
,
283
, p.
107054
.
31.
Abdoh
,
D. A.
,
2023
, “
Using Neural Networks for Thermal Analysis of Heat Conduction
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021009
.
32.
Manavi
,
S.
,
Fattahi
,
E.
, and
Becker
,
T.
,
2024
, “
A Trial Solution for Imposing Boundary Conditions of Partial Differential Equations in Physics-Informed Neural Networks
,”
Eng. Appl. Artif. Intell.
,
127
, p.
107236
.
33.
Xie
,
Y.
,
Ma
,
Y.
, and
Wang
,
Y.
,
2023
, “
Automatic Boundary Fitting Framework of Boundary Dependent Physics-Informed Neural Network Solving Partial Differential Equation with Complex Boundary Conditions
,”
Comput. Methods Appl. Mech. Eng.
,
414
, p.
116139
.
34.
Aygun
,
A.
,
Maulik
,
R.
, and
Karakus
,
A.
,
2023
, “
Physics-Informed Neural Networks for Mesh Deformation with Exact Boundary Enforcement
,”
Eng. Appl. Artif. Intell.
,
125
, p.
106660
.
35.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “Adam: A Method for Stochastic Optimization,” CoRR, abs/1412.6980. https://api.semanticscholar.org/CorpusID:6628106
36.
Ketkar
,
N.
, and
Moolayil
,
J.
,
2021
, “Introduction to PyTorch,”
Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch
,
N.
Ketkar
, and
J.
Moolayil
, eds.,
Apress
,
Berkeley, CA
, pp.
27
91
.
37.
Wu
,
C.
,
Zhu
,
M.
,
Tan
,
Q.
,
Kartha
,
Y.
, and
Lu
,
L.
,
2023
, “
A Comprehensive Study of Non-Adaptive and Residual-Based Adaptive Sampling for Physics-Informed Neural Networks
,”
Comput. Methods Appl. Mech. Eng.
,
403
, p.
115671
.
38.
Lu
,
L.
,
Meng
,
X.
,
Mao
,
Z.
, and
Karniadakis
,
G. E.
,
2021
, “
DeepXDE: A Deep Learning Library for Solving Differential Equations
,”
SIAM Rev.
,
63
(
1
), pp.
208
228
.
39.
Nabian
,
M. A.
,
Gladstone
,
R. J.
, and
Meidani
,
H.
,
2021
, “
Efficient Training of Physics-Informed Neural Networks via Importance Sampling
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
36
(
8
), pp.
962
977
.
40.
Tang
,
K.
,
Wan
,
X.
, and
Yang
,
C.
,
2023
, “
DAS-PINNs: A Deep Adaptive Sampling Method for Solving High-Dimensional Partial Differential Equations
,”
J. Comput. Phys.
,
476
, p.
111868
.
You do not currently have access to this content.