Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Electronic devices experience spatial variation in power dissipation, which results in high-temperature hot spots. These locations require aggressive thermal management, which can be complex and costly. Simple solutions such as single-phase microchannels can provide adequate heat transfer, but they are not designed to control heat transfer locally. However, microchannels can be tailored to control local flowrates and heat transfer, potentially mitigating hot spot temperatures. Using a conductive and convective resistance network for a micro-channel, an analytical model is generated for heat transfer within an individual passage. For a given channel width, this model relates the channel depth to its resistance through a power law. Over a wide range of heat fluxes, the optimal design balances local temperatures to within 3 K. The analytical model is validated using computational simulations of the optimized heat sink. For a randomly generated, nonuniform power distribution, device temperatures are balanced with a sample standard deviation below 2.5%, which is significantly better than a baseline design. When heat spreading is incorporated, the temperature increase is smaller but remains uniform, indicating that the hot spots can be mitigated.

References

1.
Casper
,
H.
,
Rexford
,
A.
,
Riegel
,
D.
,
Robinson
,
A.
,
Martin
,
E.
, and
Awwad
,
M.
,
2021
, “
The Impact of the Computer Chip Supply Shortage
,”
Proceedings of the International Conference on Industrial Engineering and Operations Management
,
Bangalore, India
,
Aug. 16–18
, pp.
236
245
.
2.
Chalise
,
D.
,
Shah
,
K.
,
Prasher
,
R.
, and
Jain
,
A.
,
2018
, “
Conjugate Heat Transfer Analysis of Thermal Management of a Li-Ion Battery Pack
,”
ASME J. Electrochem. Energy Convers. Storage
,
15
(
1
), p.
011008
.
3.
Zhang
,
Z.
,
Wang
,
Z.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
e-Prime-Adv. Electr. Eng. Electron. Energy
,
1
, p.
100009
.
4.
Dahir
,
N.
,
Karkar
,
A.
,
Palesi
,
M.
,
Mak
,
T.
, and
Yakovlev
,
A.
,
2021
, “
Power Density Aware Application Mapping in Mesh-Based Network-on-Chip Architecture: An Evolutionary Multi-Objective Approach
,”
Integration
,
81
, pp.
342
353
.
5.
Gerschler
,
B. J.
,
Kowal
,
J.
,
Sander
,
M.
, and
Sauer
,
D.
,
2007
, “
High-Spatial Impedance-Based Modeling of Electrical and Thermal Behavior of Lithium-Ion Batteries—A Powerful Design and Analysis Tool for Battery Packs in Hybrid Electric Vehicles
,”
Proceedings of the Electric Vehicle Symposium and Exposition
,
Anaheim, CA
,
Dec. 2–5
, pp.
1331
1345
.
6.
He
,
Z.
,
Yan
,
Y.
, and
Zhang
,
Z.
,
2021
, “
Thermal Management and Temperature Uniformity Enhancement of Electronic Devices by Micro Heat Sinks: A Review
,”
Energy
,
216
, p.
119223
.
7.
Muslu
,
A. M.
,
Ozluk
,
B.
,
Tamdogan
,
E.
, and
Arik
,
M.
,
2017
, “
Impact of Junction Temperature Over Forward Voltage Drop for Red, Blue and Green High Power Light Emitting Diode Chips
,”
Proceedings of the IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
May 30–June 2
, pp.
1011
1019
.
8.
Liu
,
Y.
,
Dick
,
R. P.
,
Shang
,
L.
, and
Yang
,
H.
,
2007
, “
Accurate Temperature-Dependent Integrated Circuit Leakage Power Estimation Is Easy
,”
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition
,
Nice, France
,
Apr. 16–20
, pp.
1526
1531
.
9.
Shu
,
X.
,
Yang
,
W.
,
Guo
,
Y.
,
Wei
,
K.
,
Qin
,
B.
, and
Zhu
,
G.
,
2020
, “
A Reliability Study of Electric Vehicle Battery From the Perspective of Power Supply System
,”
J. Power Sources
,
451
, p.
227805
.
10.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
(
Oct.
), pp.
304
330
.
11.
Chen
,
W. Y.
,
Shi
,
X. L.
,
Zou
,
J.
, and
Chen
,
Z. G.
,
2022
, “
Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization
,”
Mater. Sci. Eng. R Rep.
,
151
, p.
100700
.
12.
Bahaidarah
,
H. M. S.
,
2016
, “
Experimental Performance Evaluation and Modeling of Jet Impingement Cooling for Thermal Management of Photovoltaics
,”
Sol. Energy
,
135
, pp.
605
617
.
13.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
14.
Zhou
,
F.
,
Ling
,
W.
,
Zhou
,
W.
,
Qiu
,
Q.
, and
Chu
,
X.
,
2019
, “
Heat Transfer Characteristics of Cu-Based Microchannel Heat Exchanger Fabricated by Multi-Blade Milling Process
,”
Int. J. Therm. Sci.
,
138
, pp.
559
575
.
15.
Mlcak
,
J. D.
,
Anand
,
N. K.
, and
Rightley
,
M. J.
,
2008
, “
Three-Dimensional Laminar Flow and Heat Transfer in a Parallel Array of Microchannels Etched on a Substrate
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5182
5191
.
16.
Wang
,
J.
, and
Wang
,
H.
,
2015
, “
Discrete Method for Design of Flow Distribution in Manifolds
,”
Appl. Therm. Eng.
,
89
, pp.
927
945
.
17.
Rao
,
X.
,
Jin
,
C.
,
Zhang
,
H.
,
Song
,
J.
, and
Xiao
,
C.
,
2023
, “
A Hybrid Microchannel Heat Sink With Ultra-Low Pressure Drop for Hotspot Thermal Management
,”
Int. J. Heat Mass Transfer
,
211
, p.
124201
.
18.
Nasr
,
M. H.
,
Green
,
C. E.
,
Kottke
,
P. A.
,
Zhang
,
X.
,
Sarvey
,
T. E.
,
Joshi
,
Y. K.
,
Bakir
,
M. S.
, and
Fedorov
,
A. G.
,
2017
, “
Hotspot Thermal Management With Flow Boiling of Refrigerant in Ultrasmall Microgaps
,”
ASME J. Electron. Packag.
,
139
(
1
), p.
011006
.
19.
Pratanu
,
R.
,
Anand
,
N. K.
, and
Debjyoti
,
B.
,
2013
, “
Numerical Simulation of Flow and Heat Transfer in Radially Rotating Microchannels
,”
Microfluid. Nanofluid.
,
15
(
2013
), pp.
397
413
.
20.
Lu
,
G.
,
Yang
,
J.
,
Zhai
,
X.
, and
Wang
,
X.
,
2021
, “
Hotspot Thermal Management in Microchannel Heat Sinks With Vortex Generators
,”
Int. J. Therm. Sci.
,
161
, p.
106727
.
21.
Song
,
J. Y.
,
Senguttuvan
,
S.
,
Choi
,
W. W.
, and
Kim
,
S. M.
,
2022
, “
Effects of Manifold Design Parameters on Flow Uniformity in Parallel Mini-Channels
,”
Int. J. Mech. Sci.
,
234
, p.
107694
.
22.
Gilmore
,
N.
,
Hassanzadeh-Barforoushi
,
A.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2021
, “
Manifold Configurations for Uniform Flow via Topology Optimisation and Flow Visualisation
,”
Appl. Therm. Eng.
,
183
, p.
116227
.
23.
Hassan
,
J. M.
,
Mohamed
,
T. A.
,
Mohammed
,
W. S.
, and
Alawee
,
W. H.
,
2014
, “
Modeling the Uniformity of Manifold With Various Configurations
,”
ASME J. Fluids Eng.
,
1
, p.
325259
.
24.
Zhou
,
J.
,
Chen
,
X.
,
Zhao
,
Q.
,
Lu
,
M.
,
Hu
,
D.
, and
Li
,
Q.
,
2021
, “
Flow Thermohydraulic Characterization of Hierarchical-Manifold Microchannel Heat Sink With Uniform Flow Distribution
,”
Appl. Therm. Eng.
,
198
, p.
117510
.
25.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.
26.
Solovitz
,
S. A.
,
2013
, “
Analysis of Parallel Microchannels for Flow Control and Hot Spot Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
4
), p.
041007
.
27.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
(
5
), pp.
832
842
.
28.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer (Vol. 3)
,
McGraw-Hill
,
New York
.
29.
Solovitz
,
S. A.
,
Stevanovic
,
L. D.
, and
Beaupre
,
R. A.
,
2006
, “
Micro-Channel Thermal Management of High Power Devices
,”
Proceedings of the IEEE Applied Power Electronics Conference and Exposition
,
Dallas, TX
,
Mar. 19–23
, pp.
1
7
.
30.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2003
, “
Transport in Microchannels—A Critical Review
,”
Annu. Rev. Heat Transfer
,
13
, pp.
1
50
.
31.
Zhang
,
J.
,
Sadiqbatcha
,
S.
,
Jin
,
W.
, and
Tan
,
S. X. D.
,
2020
, “
Accurate Power Density Map Estimation for Commercial Multi-Core Microprocessors
,”
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition
,
Grenoble, France
,
Mar. 9–13
, pp.
1085
1090
.
32.
Solovitz
,
S. A.
, and
Lewis
,
M.
,
2014
, “
Tailored Parallel Micro-Channel Cooling for Hot Spot Mitigation
,”
Proceedings of the Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
May 27–30
, pp.
641
648
.
33.
McCreary
,
C. A.
, and
Solovitz
,
S. A.
,
2023
, “
Development of Power Law Design Tool for Hotspot Mitigation Using Parallel Microchannel Heat Exchanger
,”
Proceedings of the IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
May 30–June 2
, pp.
10
17
.
34.
Oh
,
J.
,
Birbarah
,
P.
,
Foulkes
,
T.
,
Yin
,
S. L.
,
Rentauskas
,
M.
,
Neely
,
J.
,
Pilawa-Podgurski
,
R. C. N.
, and
Miljkovic
,
N.
,
2017
, “
Jumping-Droplet Electronics Hot-Spot Cooling
,”
Appl. Phys. Lett.
,
110
(
12
), p.
123107
.
35.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, Vol.
2
,
McGraw-Hill
,
New York
.
36.
Solovitz
,
S. A.
,
Zhao
,
J.
,
Xue
,
W.
, and
Xu
,
J.
,
2013
, “
Uniform Flow Control for a Multipassage Microfluidic Sensor
,”
J. Fluid. Eng.
,
135
(
2
), p.
021101
.
37.
McCreary
,
C. A.
,
2023
, “
A Perspective on Lithium/Sulfur Battery Design and Development of Power Law Design Tool for Hotspot Mitigation Using Parallel Microchannel Heat Exchanger
,” MS Thesis, Washington State University, Vancouver, WA.
38.
Emerson
,
D. R.
,
Cieślicki
,
K.
,
Gu
,
X.
, and
Barber
,
R. W.
,
2006
, “
Biomimetic Design of Microfluidic Manifolds Based on a Generalised Murray’s Law
,”
Lab Chip
,
6
(
3
), pp.
447
454
.
You do not currently have access to this content.