Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Spray cooling is a practical solution for high heat flux heat dissipation problems. The spray cooling experiment was conducted with 50 wt% ethylene glycol aqueous solution as the base liquid in this paper. The effects of the concentrations of copper nanoparticles, copper oxide nanoparticles, silica nanoparticles, and surfactant Tween-20 on the heat transfer characteristics during spray cooling were investigated. The results showed that adding nanoparticles within a certain concentration range could enhance the effectiveness of spray cooling's heat transmission. Under the same conditions, adding copper nanoparticles has the best effect, followed by copper oxide nanoparticles, and silica nanoparticles have a relatively poor effect. Among them, the heat transfer coefficient and heat flux of the nanofluid could be raised by 10.58% and 11.34% in comparison to the base liquid when the concentration of copper nanoparticles was 0.01 wt%. As the concentration of nanoparticles rises higher, spray cooling's ability to transfer heat is hampered. Adding the surfactant Tween-20 could effectively improve the copper−water−ethylene glycol nanofluid's capacity for heat transmission. When the concentration is 3 ppm, the heat transfer coefficient and heat flux of the nanofluid with Tween-20 were increased by 9.81% and 10.38% compared to the copper−water−ethylene glycol nanofluid.

References

1.
Chen
,
H.
,
Ruan
,
X.
,
Peng
,
Y.
,
Wang
,
Y.
, and
Yu
,
C.
,
2022
, “
Application Status and Prospect of Spray Cooling in Electronics and Energy Conversion Industries
,”
Sustain. Energy Technol. Assess.
,
52
(
B
), p.
102181
.
2.
Bhatt
,
N. H.
,
Lily, Raj
,
R.
,
Varshney
,
P.
,
Pati
,
A. R.
,
Chouhan
,
D.
,
Kumar
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Transfer Rate of High Mass Flux Spray Cooling by Ethanol-Water and Ethanol-Tween20-Water Solution at Very High Initial Surface Temperature
,”
Int. J. Heat Mass Transfer
,
110
, pp.
330
347
.
3.
Zhou
,
N.
,
Feng
,
H.
,
Guo
,
Y.
,
Chen
,
H.
,
Liu
,
W.
,
Peng
,
H.
,
Lei
,
Y.
,
Deng
,
S.
, and
Xu
,
Y.
,
2022
, “
Experimental Study on the Spray Cooling Heat Transfer Performance and Dimensionless Correlations for Ethylene Glycol Water Solution
,”
Appl. Therm. Eng.
,
214
, p.
118824
.
4.
Shoji
,
M.
, and
Nishiguchi
,
S.
,
2011
, “
Boiling Heat Transfer of Butanol Aqueous Solution
,”
ASME International Conference on Nanochannels
,
Edmonton, Alberta, Canada
,
June 19–22
, pp.
649
654
.
5.
Lin
,
L.
,
Harris
,
R.
,
Lawson
,
J.
, and
Ponnappan
,
R.
,
2006
, “
Spray Cooling with Methanol and Water Mixtures
,”
9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
,
San Francisco, CA
,
June 5–8
, Vol. 3, pp.
1465
1470
.
6.
Murshed
,
S. M. S.
, and
Nieto de Castro
,
C. A.
,
2016
, “
Conduction and Convection Heat Transfer Characteristics of Ethylene Glycol Based Nanofluids—A Review
,”
Appl. Energy
,
185
, pp.
681
695
.
7.
Oezerinc
,
S.
,
Kakac
,
S.
, and
Yazicioglu
,
A. G.
,
2010
, “
Enhanced Thermal Conductivity of Nanofluids: A State-of-the-art Review
,”
Microfluid. Nanofluid.
,
8
(
2
), pp.
145
170
.
8.
Sundar
,
L. S.
, and
Singh
,
M. K.
,
2013
, “
Convective Heat Transfer and Friction Factor Correlations of Nanofluid in a Tube and with Inserts: A Review
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
23
35
.
9.
Ding
,
Y.
,
Chen
,
H.
,
He
,
Y.
,
Lapkin
,
A.
,
Yeganeh
,
M.
,
Siller
,
L.
, and
Butenko
,
Y.
,
2007
, “
Forced Convective Heat Transfer of Nanofluids
,”
Adv. Powder Technol.
,
18
(
6
), pp.
813
824
.
10.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.
11.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.
12.
Chang
,
T. B.
,
2015
, “
Formation of Nano-Adsorption Layer and Its Effects on Nanofluid Spray Heat Transfer Performance
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
2
), p.
021901
.
13.
Kim
,
H.
,
Kim
,
J.
, and
Kim
,
M. H.
,
2006
, “
Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
49
(
25
), pp.
5070
5074
.
14.
Raveshi
,
M. R.
,
Keshavarz
,
A.
,
Mojarrad
,
M. S.
, and
Amiri
,
S.
,
2013
, “
Experimental Investigation of Pool Boiling Heat Transfer Enhancement of Alumina–Water–Ethylene Glycol Nanofluids
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
805
814
.
15.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
16.
Liu
,
Z.-H.
, and
Qiu
,
Y.-H.
,
2007
, “
Boiling Heat Transfer Characteristics of Nanofluids Jet Impingement on a Plate Surface
,”
Heat Mass Transfer
,
43
(
7
), pp.
699
706
.
17.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, “
Boiling Heat Transfer Performance and Phenomena of Al2O3–Water Nano-Fluids From a Plain Surface in a Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.
18.
Bang
,
I. C.
,
Chang
,
S. H.
, and
Baek
,
W. P.
,
2005
, “
Direct Observation of a Liquid Film Under a Vapor Environment in a Pool Boiling Using a Nanofluid
,”
Appl. Phys. Lett.
,
86
(
13
), p.
134107
.
19.
Ghadimi
,
A.
, and
Metselaar
,
I. H.
,
2013
, “
The Influence of Surfactant and Ultrasonic Processing on Improvement of Stability, Thermal Conductivity and Viscosity of Titania Nanofluid
,”
Exp. Therm. Fluid Sci.
, 51, pp.
1
9
.
20.
Chakraborty
,
S.
,
Sengupta
,
I.
,
Sarkar
,
I.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2019
, “
Effect of Surfactant on Thermo-Physical Properties and Spray Cooling Heat Transfer Performance of Cu-Zn-Al LDH Nanofluid
,”
Appl. Clay Sci.
,
168
, pp.
43
55
.
21.
Ravikumar
,
S. V.
,
Haldar
,
K.
,
Jha
,
J. M.
,
Chakraborty
,
S.
,
Sarkar
,
I.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2015
, “
Heat Transfer Enhancement Using Air-Atomized Spray Cooling With Water-Al2O3 Nanofluid
,”
Int. J. Therm. Sci.
,
96
, pp.
85
93
.
22.
Liu
,
N.
,
Zhan
,
T.-J.
,
Zhang
,
Y.-W.
,
Yin
,
X.-M.
, and
Zhang
,
L.-X.
,
2019
, “
Experimental Investigation of Comprehensive Effects of Surfactant and Inclined Mode on Spray Cooling Heat Transfer
,”
Int. J. Therm. Sci.
,
136
, pp.
457
466
.
23.
Chakraborty
,
S.
,
Sarkar
,
I.
,
Roshan
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2019
, “
Spray Cooling of Hot Steel Plate Using Aqueous Solution of Surfactant and Polymer
,”
Ther. Sci. Eng. Prog.
,
10
, pp.
217
231
.
24.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Andhare
,
S.
,
Chakraborty
,
S.
, and
Pal
,
S. K.
,
2012
, “
Experimental Study and Optimization of Air Atomized Spray With Surfactant Added Water to Produce High Cooling Rate
,”
J. Enhanced Heat Transfer
,
19
(
5
), pp.
397
408
.
25.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Sarkar
,
I.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Mixed-Surfactant Additives for Enhancement of Air-Atomized Spray Cooling of a Hot Steel Plate
,”
Exp. Therm. Fluid. Sci.
,
55
, pp.
210
220
.
26.
Liu
,
N.
,
Yu
,
Z.
,
Liang
,
Y.
, and
Zhang
,
H.
,
2019
, “
Effects of Mixed Surfactants on Heat Transfer Performance of Pulsed Spray Cooling
,”
Int. J. Heat Mass Transfer
,
144
, p.
118593
.
You do not currently have access to this content.