Abstract

In the fusion power conversion system, a printed circuit heat exchanger (PCHE) between molten salt (MS) and supercritical carbon dioxide (sCO2) transfers huge heat between loops. To improve heat transfer efficiency, a new heterogeneous PCHE with MS zigzag passage and sCO2 airfoil fin passage was proposed. A one-dimensional simulation of the new PCHE was conducted to study the effects of the plate number and the length on its pressure drop, MS mass flowrate, capital cost, and operating cost. Then, a new single objective optimization of the total cost was performed by the genetic algorithm (GA) based on the Chinese Fusion Engineering Testing Reactor (CFETR) parameters. Finally, the new optimal PCHE was compared with the PCHE with MS straight passage and sCO2 airfoil fin passage. The results show that the length and the plate number of the PCHE have an important effect on the pressure drop and its cost. The optimal geometry scheme with the minimum cost is given for the application to CFETR. By comparison with the MS straight-passage PCHE, it is found that the total cost of the new PCHE is reduced by 5.7% and the volume of the heat exchanger is reduced by 10.7%.

References

1.
Zhuang
,
G.
,
Li
,
G. Q.
,
Li
,
J.
,
Wan
,
Y. X.
,
Liu
,
Y.
,
Wang
,
X. L.
,
Song
,
Y. T.
,
Chan
,
V.
,
Yang
,
Q. W.
, and
Wan
,
B. N.
,
2019
, “
Progress of the CFETR Design
,”
Nucl. Fusion
,
59
(
11
), p.
112010
.
2.
Wei
,
S.
,
Sun
,
X.
,
Wang
,
H.
,
Jia
,
J.
,
Chen
,
Z.
, and
Zhang
,
S.
,
2020
, “
Preliminary Safety Analysis of Tritium Source Term for the CFETR Tritium Plant
,”
Fusion Sci. Technol.
,
76
(
7
), pp.
869
877
.
3.
Chen
,
Z.
,
Wan
,
T.
,
Zhao
,
P.
,
Lei
,
M.
, and
Li
,
Y.
,
2021
, “
Study of Power Conversion System for Chinese Fusion Engineering Testing Reactor
,”
Energy
,
218
, p.
119495
.
4.
Guccione
,
S.
,
2020
,
Design and optimization of a sodium-molten salt heat exchanger for Concentrating Solar Power applications
.
5.
Zhao
,
Y.
,
Li
,
P.
, and
Jin
,
H.
,
2017
, “
Heat Transfer Performance Comparisons of Supercritical Carbon Dioxide and NaCl–KCl–ZnCl2 Eutectic Salts for Solar s-CO2 Brayton Cycle
,”
Energy Proc.
,
142
, pp.
680
687
.
6.
Fu
,
Q.
,
Ding
,
J.
,
Lao
,
J.
,
Xie
,
W.
,
Wang
,
W.
, and
Lu
,
J.
,
2019
, “
Numerical Simulation of Heat Transfer Performance Between Molten Salt and Supercritical CO2 in Double-Pipe Heat Exchanger
,”
Energy Proc.
,
158
, pp.
5741
5746
.
7.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” PhD thesis, Massachusetts Institute of Technology, Department of Nuclear Engineering, Cambridge, MA.
8.
Pandey
,
V.
,
Kumar
,
P.
, and
Dutta
,
P.
,
2020
, “
Thermo-Hydraulic Analysis of Compact Heat Exchanger for a Simple Recuperated sCO2 Brayton Cycle
,”
Renew. Sustainable Energy Rev.
,
134
, p.
110091
.
9.
Zhang
,
H.
,
Cheng
,
K.
,
Huai
,
X.
,
Zhou
,
J.
, and
Guo
,
J.
,
2021
, “
Experimental and Numerical Study of an 80-kW Zigzag Printed Circuit Heat Exchanger for Supercritical CO2 Brayton Cycle
,”
J. Therm. Sci.
,
30
(
4
), pp.
1289
1301
.
10.
Xu
,
T.
,
Zhao
,
H.
,
Wang
,
M.
, and
Qi
,
J.
,
2021
, “
Numerical Study of Thermal-Hydraulic Performance of a New Spiral Z-Type PCHE for Supercritical CO2 Brayton Cycle
,”
Energies
,
14
(
15
), p.
4417
.
11.
Xu
,
X.
,
Ma
,
T.
,
Li
,
L.
,
Zeng
,
M.
,
Chen
,
Y.
,
Huang
,
Y.
, and
Wang
,
Q.
,
2014
, “
Optimization of fin Arrangement and Channel Configuration in an Airfoil fin PCHE for Supercritical CO2 Cycle
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
867
875
.
12.
Saeed
,
M.
, and
Kim
,
M.-H.
,
2019
, “
Thermal-Hydraulic Analysis of Sinusoidal fin-Based Printed Circuit Heat Exchangers for Supercritical CO2 Brayton Cycle
,”
Energy Convers. Manage.
,
193
, pp.
124
139
.
13.
Jeon
,
S.
,
Baik
,
Y.-J.
,
Byon
,
C.
, and
Kim
,
W.
,
2016
, “
Thermal Performance of Heterogeneous PCHE for Supercritical CO2 Energy Cycle
,”
Int. J. Heat Mass Transfer
,
102
, pp.
867
876
.
14.
Fu
,
Q.
,
Ding
,
J.
,
Lao
,
J.
,
Wang
,
W.
, and
Lu
,
J.
,
2019
, “
Thermal-hydraulic Performance of Printed Circuit Heat Exchanger With Supercritical Carbon Dioxide Airfoil fin Passage and Molten Salt Straight Passage
,”
Appl. Energy
,
247
, pp.
594
604
.
15.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.
16.
Montes
,
M. J.
,
Linares
,
J. I.
,
Barbero
,
R.
, and
Moratilla
,
B. Y.
,
2020
, “
Optimization of a new Design of Molten Salt-to-CO2 Heat Exchanger Using Exergy Destruction Minimization
,”
Entropy
,
22
(
8
), p.
883
.
17.
Montes
,
M. J.
,
Linares
,
J. I.
,
Barbero
,
R.
, and
Rovira
,
A.
,
2020
, “
Proposal of a new Design of Source Heat Exchanger for the Technical Feasibility of Solar Thermal Plants Coupled to Supercritical Power Cycles
,”
Sol. Energy
,
211
, pp.
1027
1041
.
18.
Lao
,
J.
,
Fu
,
Q.
,
Wang
,
W.
,
Ding
,
J.
, and
Lu
,
J.
,
2021
, “
Heat Transfer Characteristics of Printed Circuit Heat Exchanger With Supercritical Carbon Dioxide and Molten Salt
,”
J. Therm. Sci.
,
30
(
3
), pp.
880
891
.
19.
Lao
,
J.
,
Ding
,
J.
,
Fu
,
Q.
,
Wang
,
W.
, and
Lu
,
J.
,
2019
, “
Heat Transfer Between Molten Salt and Supercritical CO2 in Discontinuous Fins Print Circuits Heat Exchanger
,”
Energy Proc.
,
158
, pp.
5832
5837
.
20.
Zhu
,
Q.
,
Tan
,
X.
,
Barari
,
B.
,
Caccia
,
M.
,
Strayer
,
A. R.
,
Pishahang
,
M.
,
Sandhage
,
K. H.
, and
Henry
,
A.
,
2021
, “
Design of a 2 MW ZrC/W-Based Molten-Salt-to-sCO2 PCHE for Concentrated Solar Power
,”
Appl. Energy
,
300
, p.
117313
.
21.
Xu
,
H.
,
Duan
,
C.
,
Ding
,
H.
,
Li
,
W.
,
Zhang
,
Y.
, and
Hong
,
G.
,
2021
, “
Multi-Objective Optimization Based on Economic Analysis for a Printed Circuit Heat Exchanger With Application to Brayton Cycle
,”
J. Nucl. Sci. Technol.
,
58
(
9
), pp.
1038
1047
.
22.
Yang
,
Y.
,
Li
,
H.
,
Yao
,
M.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Zhang
,
L.
, and
Wu
,
S.
,
2020
, “
Optimizing the Size of a Printed Circuit Heat Exchanger by Multi-Objective Genetic Algorithm
,”
Appl. Therm. Eng.
,
167
, p.
114811
.
23.
Zhang
,
D.
,
Cui
,
S.
,
Cheng
,
J.
,
Tian
,
W.
, and
Su
,
G. H.
,
2018
, “
Improving the Optimization Algorithm of NTCOC for Application in the HCSB Blanket for CFETR Phase II
,”
Fusion Eng. Des.
,
135
, pp.
216
227
.
24.
Peng
,
X.
,
Liu
,
P.
,
Lu
,
K.
,
Qin
,
S.
,
Mao
,
X.
, and
Qian
,
X.
,
2020
, “
Design Optimization of Plasma Facing Unit Fixation Distribution for CFETR Divertor
,”
Fusion Eng. Des.
,
152
, p.
111434
.
25.
Qin
,
S.
,
Yao
,
D.
,
Wang
,
Q.
,
Mao
,
X.
,
Liu
,
P.
,
Qian
,
X.
,
Xu
,
T.
,
Li
,
L.
,
Peng
,
X.
, and
Lu
,
K.
,
2020
, “
Preliminary Design Progress of the CFETR Water-Cooled Divertor
,”
IEEE Trans. Plasma Sci.
,
48
(
6
), pp.
1733
1742
.
26.
Linares
,
J. I.
,
Arenas
,
E.
,
Cantizano
,
A.
,
Porras
,
J.
,
Moratilla
,
B. Y.
,
Carmona
,
M.
, and
Batet
,
L.
,
2018
, “
Sizing of a Recuperative Supercritical CO2 Brayton Cycle as Power Conversion System for DEMO Fusion Reactor Based on Dual Coolant Lithium Lead Blanket
,”
Fusion Eng. Des.
,
134
, pp.
79
91
.
27.
Wang
,
W.-Q.
,
Qiu
,
Y.
,
He
,
Y.-L.
, and
Shi
,
H.-Y.
,
2019
, “
Experimental Study on the Heat Transfer Performance of a Molten-Salt Printed Circuit Heat Exchanger With Airfoil Fins for Concentrating Solar Power
,”
Int. J. Heat Mass Transfer
,
135
, pp.
837
846
.
28.
Kim
,
I. H.
, and
No
,
H. C.
,
2013
, “
Thermal–Hydraulic Physical Models for a Printed Circuit Heat Exchanger Covering He, He–CO2 Mixture, and Water Fluids Using Experimental Data and CFD
,”
Exp. Therm. Fluid. Sci.
,
48
, pp.
213
221
.
29.
Kim
,
I. H.
,
Zhang
,
X.
,
Christensen
,
R.
, and
Sun
,
X.
,
2016
, “
Design Study and Cost Assessment of Straight, Zigzag, S-Shape, and OSF PCHEs for a FLiNaK–SCO2 Secondary Heat Exchanger in FHRs
,”
Ann. Nucl. Energy
,
94
, pp.
129
137
.
30.
Yoon
,
S. H.
,
No
,
H. C.
, and
Kang
,
G. B.
,
2014
, “
Assessment of Straight, Zigzag, S-Shape, and Airfoil PCHEs for Intermediate Heat Exchangers of HTGRs and SFRs
,”
Nucl. Eng. Des.
,
270
, pp.
334
343
.
31.
Lee
,
S. W.
,
Shin
,
S. M.
,
Chung
,
S.
, and
Jo
,
H.
,
2022
, “
Evaluation of Thermal-Hydraulic Performance and Economics of Printed Circuit Heat Exchanger (PCHE) for Recuperators of Sodium-Cooled Fast Reactors (SFRs) Using CO2 and N2 as Working Fluids
,”
Nucl. Eng. Technol.
,
54
(
5
), pp.
1874
1889
.
32.
Xu
,
H.
,
Duan
,
C.
,
Ding
,
H.
,
Li
,
W.
,
Zhang
,
Y.
,
Hong
,
G.
, and
Gong
,
H.
,
2021
, “
The Optimization for the Straight-Channel PCHE Size for Supercritical CO2 Brayton Cycle
,”
Nucl. Eng. Technol.
,
53
(
6
), pp.
1786
1795
.
33.
Holland
,
J. H.
,
1992
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence
,
MIT Press
,
Cambridge, MA
.
34.
Mohagheghi
,
M.
,
Kapat
,
J.
, and
Nagaiah
,
N.
,
2014
, “
ASME Turbo Expo 2014
,”
Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, p. V03BT36A018.
35.
Mohagheghi
,
M.
, and
Kapat
,
J.
,
2013
, “
ASME Turbo Expo 2013
,”
Turbine Technical Conference and Exposition
,
San Antonio, TX
,
June 3–7
, p. V002T007A013.
36.
Al-Rashed
,
A. A. A. A.
, and
Afrand
,
M.
,
2021
, “
Multi-Criteria Exergoeconomic Optimization for a Combined gas Turbine-Supercritical CO2 Plant With Compressor Intake Cooling Fueled by Biogas From Anaerobic Digestion
,”
Energy
,
223
, p.
119997
.
37.
Wang
,
K.
, and
He
,
Y.-L.
,
2017
, “
Thermodynamic Analysis and Optimization of a Molten Salt Solar Power Tower Integrated With a Recompression Supercritical CO2 Brayton Cycle Based on Integrated Modeling
,”
Energy Convers. Manage.
,
135
, pp.
336
350
.
38.
Sun
,
L.
,
Wang
,
D.
, and
Xie
,
Y.
,
2021
, “
Thermodynamic and Exergoeconomic Analysis of Combined Supercritical CO2 Cycle and Organic Rankine Cycle Using CO2-Based Binary Mixtures for gas Turbine Waste Heat Recovery
,”
Energy Convers. Manage.
,
243
, p.
114400
.
39.
Crespi
,
F.
,
Sánchez
,
D.
,
Rodríguez
,
J. M.
, and
Gavagnin
,
G.
,
2017
, “
Fundamental Thermo-Economic Approach to Selecting sCO2 Power Cycles for CSP Applications
,”
Energy Proc.
,
129
, pp.
963
970
.
You do not currently have access to this content.