Abstract

As the core component of electric vehicles (EVs), the performance of motors affects the use of EVs. Motors are sensitive to temperature, and overheated operating temperature may cause the deterioration of the magnetic properties and the reduction of efficiency. To effectively improve the heat dissipation of the motor, this work presents an incremental learning strategy-assisted multi-objective optimization method for an oil–water mixed cooling induction motor (IM). The key parameters of the motor are modeled parametrically, and the design of the experiment is carried out by the Latin hypercube method. The incremental learning strategy is used to improve the low accuracy of the surrogate model. Four multi-objective optimization algorithms are used to drive the optimization process, and the optimal cooling system parameters are obtained. The reliability of the proposed method is verified by motor bench experiments. The optimization results suggest that the maximum temperature of the motor is reduced by 5 K after optimization, and the heat dissipation of the motor is improved effectively, which provides a theoretical basis for further promotion and improvement of the induction motor.

References

1.
Barrero
,
F.
, and
Duran
,
M. J.
,
2016
, “
Recent Advances in the Design, Modeling, and Control of Multiphase Machines-Part I
,”
IEEE Trans. Ind. Electron.
,
63
(
1
), pp.
449
458
.
2.
Du
,
J. M.
,
Li
,
Y.
,
Yu
,
Z. Y.
, and
Wang
,
Z. C.
,
2021
, “
Research on Radial Electromagnetic Force and Vibration Response Characteristics of Squirrel-Cage Induction Motor Fed by PWM Inverter
,”
IEEE Trans. Appl. Supercons.
,
31
(
8
), pp.
1
4
.
3.
Groschup
,
B.
,
Nell
,
M.
,
Pauli
,
F.
, and
Hameyer
,
K.
,
2021
, “
Characteristic Thermal Parameters in Electric Motors: Comparison Between Induction- and Permanent Magnet Excited Machine
,”
IEEE Trans. Energy Convers.
,
36
(
3
), pp.
2239
2248
.
4.
Sung
,
S. C.
,
Kim
,
S. K.
, and
Oh
,
M. D.
,
2021
, “
Numerical Analysis of the Cooling Performance of a Totally Enclosed Air-to-Air Cooled Motor Using a Dual Cell Heat Exchanger Model
,”
J. Mech. Sci. Technol.
,
35
(
6
), pp.
2719
2731
.
5.
Dong
,
T. H.
,
Zhang
,
X.
,
Zhu
,
C.
,
Zhou
,
F.
, and
Sun
,
Z. J.
,
2021
, “
Improved Thermal Modeling Methodology for Embedded Real-Time Thermal Management System of Automotive Electric Machines
,”
IEEE Trans. Ind. Inform.
,
17
(
7
), pp.
4702
4713
.
6.
Liu
,
M. D.
,
Li
,
Y. J.
,
Ding
,
H.
, and
Sarlioglu
,
B.
,
2017
, “
Thermal Management and Cooling of Windings in Electrical Machines for Electric Vehicle and Traction Application
,”
2017 IEEE Transportation Electrification Conference and Expo (ITEC)
,
Chicago, IL
,
June 22–24
, pp.
668
673
.
7.
Tikadar
,
A.
,
Johnston
,
D.
,
Kumar
,
N.
,
Joshi
,
Y.
, and
Kumar
,
S.
,
2021
, “
Comparison of Electro-Thermal Performance of Advanced Cooling Techniques for Electric Vehicle Motors
,”
Appl. Therm. Eng.
,
183
, p.
116182
.
8.
Chen
,
W.
,
Ju
,
Y.
,
Yan
,
D.
,
Guo
,
L.
,
Geng
,
Q.
, and
Shi
,
T.
,
2019
, “
Design and Optimization of Dual-Cycled Cooling Structure for Fully-Enclosed Permanent Magnet Motor
,”
Appl. Therm. Eng.
,
152
, pp.
338
349
.
9.
Kim
,
C.
, and
Lee
,
K.-S.
,
2017
, “
Numerical Investigation of the Air-Gap Flow Heating Phenomena in Large-Capacity Induction Motors
,”
Int. J. Heat Mass Transfer
,
110
, pp.
746
752
.
10.
Kim
,
C.
, and
Lee
,
K.-S.
,
2017
, “
Thermal Nexus Model for the Thermal Characteristic Analysis of an Open-Type Air-Cooled Induction Motor
,”
Appl. Therm. Eng.
,
112
, pp.
1108
1116
.
11.
Deriszadeh
,
A.
,
De Monte
,
F.
, and
Villani
,
M.
,
2021
, “
Numerical Thermal Performance Investigation of an Electric Motor Passive Cooling System Employing Phase Change Materials
,”
Proceedings of the ASME 2021 Heat Transfer Summer Conference (HT2021)
,
Virtual, Online
,
June 16–18
.
12.
Lindh
,
P. M.
,
Petrov
,
I.
,
Semken
,
R. S.
,
Niemela
,
M.
,
Pyrhonen
,
J. J.
,
Aarniovuori
,
L.
,
Vaimann
,
T.
, and
Kallaste
,
A.
,
2016
, “
Direct Liquid Cooling in Low-Power Electrical Machines: Proof-of-Concept
,”
IEEE Trans. Energy Convers.
,
31
(
4
), pp.
1257
1266
.
13.
Pei
,
Z. L.
,
Zhao
,
J. W.
,
Song
,
J. C.
,
Zong
,
K. F.
,
He
,
Z. Y.
, and
Zhou
,
Y.
,
2021
, “
Temperature Field Calculation and Water-Cooling Structure Design of Coreless Permanent Magnet Synchronous Linear Motor
,”
IEEE Trans. Ind. Electron.
,
68
(
2
), pp.
1065
1076
.
14.
Chen
,
E.
, and
Rupertus
,
G.
,
2017
, “
Development of Water Jacket Cooled Motor and Its Applications in Cement Industry
,”
2017 IEEE-IAS/PCA Cement Industry Technical Conference
,
Calgary, AB, Canada
,
May 21–25
, pp.
1
18
.
15.
Park
,
J.
,
An
,
J.
,
Han
,
K.
,
Choi
,
H.-S.
, and
Park
,
I.
,
2022
, “
Enhancement of Cooling Performance in Traction Motor of Electric Vehicle Using Direct Slot Cooling Method
,”
Appl. Therm. Eng.
,
217
, p.
119082
.
16.
Chang
,
M.
,
Lai
,
B.
,
Wang
,
H.
,
Bai
,
J.
, and
Mao
,
Z.
,
2023
, “
Comprehensive Efficiency Analysis of Air-Cooled vs Water-Cooled Electric Motor for Unmanned Aerial Vehicle
,”
Appl. Therm. Eng.
,
225
, p.
120226
.
17.
Lu
,
Q.
,
Muthukumar
,
R.
,
Ge
,
H.
, and
Parameswaran
,
S.
,
2020
, “
Numerical Study of a Rotating Liquid Jet Impingement Cooling System
,”
Int. J. Heat Mass Transfer
,
163
, p.
120446
.
18.
Satrustegui
,
M.
,
Martinez-Iturralde
,
M.
,
Ramos
,
J. C.
,
Gonzalez
,
P.
,
Astarbe
,
G.
, and
Elosegui
,
I.
,
2017
, “
Design Criteria for Water Cooled Systems of Induction Machines
,”
Appl. Therm. Eng.
,
114
, pp.
1018
1028
.
19.
Li
,
Y.
,
Li
,
C.
,
Garg
,
A.
,
Gao
,
L.
, and
Li
,
W.
,
2021
, “
Heat Dissipation Analysis and Multi-objective Optimization of a Permanent Magnet Synchronous Motor Using Surrogate Assisted Method
,”
Case Stud. Therm. Eng.
,
27
, p.
101203
.
20.
Wang
,
N.
,
Li
,
C.
,
Li
,
W.
,
Huang
,
M.
, and
Qi
,
D.
,
2021
, “
Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System With Spoilers
,”
Appl. Therm. Eng.
,
192
, p.
116932
.
21.
Patil
,
M. S.
,
Seo
,
J.-H.
,
Panchal
,
S.
,
Jee
,
S.-W.
, and
Lee
,
M.-Y.
,
2020
, “
Investigation on Thermal Performance of Water-Cooled Li-Ion Pouch Cell and Pack at High Discharge Rate With U-Turn Type Microchannel Cold Plate
,”
Int. J. Heat Mass Transfer
,
155
, p.
119728
.
22.
Siruvuri
,
S. D. V. S. S. V.
, and
Budarapu
,
P. R.
,
2020
, “
Studies on Thermal Management of Lithium-Ion Battery Pack Using Water as the Cooling Fluid
,”
J. Energy Storage
,
29
, p.
105059
.
23.
Yang
,
W.
,
Zhou
,
F.
,
Zhou
,
H.
,
Wang
,
Q.
, and
Kong
,
J.
,
2020
, “
Thermal Performance of Cylindrical Lithium-Ion Battery Thermal Management System Integrated With Mini-Channel Liquid Cooling and Air Cooling
,”
Appl. Therm. Eng.
,
175
, p.
115331
.
24.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.
25.
Aoki
,
S.
,
Hibi
,
T.
, and
Ohsugi
,
H.
,
2016
, “
Markov-Chain Monte Carlo Methods for the Box-Behnken Designs and Centrally Symmetric Configurations
,”
J. Stat. Theory Pract.
,
10
(
1
), pp.
59
72
.
26.
Lei
,
G.
,
Chen
,
X. M.
,
Zhu
,
J. G.
,
Guo
,
Y. G.
,
Xu
,
W.
, and
Shao
,
K. R.
,
2012
, “
Multiobjective Sequential Optimization Method for the Design of Industrial Electromagnetic Devices
,”
IEEE Trans. Magn.
,
48
(
11
), pp.
4538
4541
.
27.
Dalbey
,
K. R.
, and
Karystinos
,
G. N.
,
2011
, “
Generating a Maximally Spaced Set of Bins to Fill for High-Dimensional Space-Filling Latin Hypercube Sampling
,”
Int. J. Uncertain. Quant.
,
1
(
3
), pp.
241
255
.
28.
Kailkhura
,
B.
,
Thiagarajan
,
J. J.
,
Rastogi
,
C.
,
Varshney
,
P. K.
, and
Bremer
,
P. T.
,
2018
, “
A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms
,”
J. Mach. Learn. Res.
,
19
, p.
34
.
29.
Li
,
W.
,
Gao
,
L.
, and
Xiao
,
M.
,
2020
, “
Multidisciplinary Robust Design Optimization Under Parameter and Model Uncertainties
,”
Eng. Optim.
,
52
(
3
), pp.
426
445
.
30.
Li
,
W.
,
Gao
,
L.
,
Garg
,
A.
, and
Xiao
,
M.
,
2022
, “
Multidisciplinary Robust Design Optimization Considering Parameter and Metamodeling Uncertainties
,”
Eng. Comput.
,
38
(
1
), pp.
191
208
.
31.
Anand
,
P.
,
Rastogi
,
R.
, and
Chandra
,
S.
,
2020
, “
A Class of New Support Vector Regression Models
,”
Appl. Soft Comput.
,
94
, p.
106446
.
32.
Qi
,
J.
, and
Li
,
Y. H.
,
2021
, “
Event-Triggered L-1 Filtering for Uncertain Networked Control Systems With Multiple Sensor Fault Modes
,”
Trans. Inst. Meas. Control
,
43
(
6
), pp.
1325
1336
.
33.
Li
,
Y.
,
Garg
,
A.
,
Shevya
,
S.
,
Li
,
W.
,
Gao
,
L.
, and
Lee Lam
,
J. S.
,
2021
, “
A Hybrid Convolutional Neural Network-Long Short Term Memory for Discharge Capacity Estimation of Lithium-Ion Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
19
(
3
), p.
030901
.
34.
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
Improved Collaboration Pursuing Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
59
(
6
), pp.
1949
1968
.
35.
Li
,
W.
,
Chen
,
S.
,
Peng
,
X.
,
Xia
,
M.
,
Gao
,
L.
,
Garg
,
A.
, and
Bao
,
N.
,
2019
, “
A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles
,”
Engineering
,
5
(
4
), pp.
795
802
.
36.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2021
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
37.
Zhan
,
D.
, and
Xing
,
H.
,
2021
, “
A Fast Kriging-Assisted Evolutionary Algorithm Based on Incremental Learning
,”
IEEE Trans. Evolut. Comput.
,
25
(
5
), pp.
941
955
.
38.
Lagnoux
,
A.
,
Nguyen
,
T. M. N.
,
Demory
,
B.
, and
Henner
,
M.
,
2021
, “
Kriging and Expected Improvement Combined to an Industrial Context—Prediction of New Geometries Increasing the Efficiency of Fans
,”
J. Sfds
,
162
(
1
), pp.
22
45
.
39.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evolut. Comput.
,
6
(
2
), pp.
182
197
.
40.
Tian
,
Y.
,
Zhang
,
X.
,
Wang
,
C.
, and
Jin
,
Y.
,
2020
, “
An Evolutionary Algorithm for Large-Scale Sparse Multi-objective Optimization Problems
,”
IEEE Trans. Evolut. Comput.
,
24
(
2
), pp.
380
393
.
41.
Liu
,
Z. Z.
, and
Wang
,
Y.
,
2019
, “
Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces
,”
IEEE Trans. Evolut. Comput.
,
23
(
5
), pp.
870
884
.
42.
Coello
,
C. A. C.
, and
Lechuga
,
M. S.
,
2002
, “
MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization
,”
Proceedings of the 2002 Congress on Evolutionary Computation
,
Honolulu, HI
,
May 12–17
, pp.
1051
1056
.
43.
Li
,
W.
,
Li
,
C. B.
,
Wang
,
N. B.
,
Li
,
J.
, and
Zhang
,
J. W.
,
2022
, “
Energy Saving Design Optimization of CNC Machine Tool Feed System: A Data-Model Hybrid Driven Approach
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
4
), pp.
3809
3820
.
44.
Li
,
C. B.
,
Huang
,
M. L.
,
Li
,
W.
,
Wang
,
N. B.
, and
Fu
,
J. D.
,
2022
, “
Optimization of an Induction Motor for Loss Reduction Considering Manufacturing Tolerances
,”
Struct. Multidiscip. Optim.
,
65
(
7
), p.
187
.
You do not currently have access to this content.