Abstract

The microchannel cooling plate is a vital component in an efficient battery thermal management system (BTMS) that has been widely used to design battery modules for electric vehicles. In this study, regarding the leaf vein structure of plantain, a novel bionic cooling plate similar to the plantain leaf vein channels was proposed. A three-dimensional mathematical model of BTMS including the bionic cooling plate was established. The effects of the structure type; the reducing angle of the main inlet channel; the number, angle, and width of branch channels; and the inlet mass flowrate of the coolant on the thermal performance of the BTMS were investigated. The results indicated that the cooling plate of single-inlet and double-outlet channels with leaf veins exhibited excellent comprehensive performance. The increase of the reducing angle of the main inlet channel decreased the pressure drop by up to 43.55% but could not improve the temperature uniformity of batteries; the maximum temperature difference of batteries increased by 0.11 °C. A larger number of branch channels and a smaller angle of branch channels can improve the cooling performance of BTMS, while the increase in the width of branch channels significantly decreases the pressure drop. At a coolant inlet mass flowrate of 1 g/s, the BTMS can control the maximum temperature and maximum temperature difference of the batteries at a 3C discharge rate to 31.75 °C and 4.95 °C, respectively, and exhibited excellent temperature uniformity at low pressure drop (669 Pa).

References

1.
Wen
,
J.
,
Zhao
,
D.
, and
Zhang
,
C.
,
2020
, “
An Overview of Electricity Powered Vehicles: Lithium-Ion Battery Energy Storage Density and Energy Conversion Efficiency
,”
Renewable Energy
,
162
, pp.
1629
1648
.
2.
Li
,
H.
,
Xiao
,
X.
,
Wang
,
Y.
,
Lian
,
C.
,
Li
,
Q.
, and
Wang
,
Z.
,
2020
, “
Performance Investigation of a Battery Thermal Management System With Microencapsulated Phase Change Material Suspension
,”
Appl. Therm. Eng.
,
180
, p.
115795
.
3.
Zhang
,
Q.
,
Li
,
C.
, and
Wu
,
Y.
,
2017
, “
Analysis of Research and Development Trend of the Battery Technology in Electric Vehicle With the Perspective of Patent
,”
Energy Procedia
,
105
, pp.
4274
4280
.
4.
Zhang
,
W.
,
Liang
,
Z.
,
Wu
,
W.
,
Ling
,
G.
, and
Ma
,
R.
,
2021
, “
Design and Optimization of a Hybrid Battery Thermal Management System for Electric Vehicle Based on Surrogate Model
,”
Int. J. Heat Mass Transfer
,
174
, p.
121318
.
5.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Sujith
,
R.
, and
Datta
,
S. P.
,
2021
, “
A Numerical Analysis on Multi-Stage Tesla Valve Based Cold Plate for Cooling of Pouch Type Li-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
177
, p.
121560
.
6.
Xie
,
J.
,
Xie
,
Y.
, and
Yuan
,
C.
,
2019
, “
Numerical Study of Heat Transfer Enhancement Using Vortex Generator for Thermal Management of Lithium Ion Battery
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1184
1193
.
7.
Shen
,
X.
,
Cai
,
T.
,
He
,
C.
,
Yang
,
Y.
, and
Chen
,
M.
,
2023
, “
Thermal Analysis of Modified Z-Shaped air-Cooled Battery Thermal Management System for Electric Vehicles
,”
J. Energy Storage
,
58
, p.
106356
.
8.
Li
,
W.
,
Garg
,
A.
,
Xiao
,
M.
, and
Gao
,
L.
,
2020
, “
Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
2
), p.
021015
.
9.
Lai
,
Y.
,
Wu
,
W.
,
Chen
,
K.
,
Wang
,
S.
, and
Xin
,
C.
,
2019
, “
A Compact and Lightweight Liquid-Cooled Thermal Management Solution for Cylindrical Lithium-Ion Power Battery Pack
,”
Int. J. Heat Mass Transfer
,
144
, p.
118581
.
10.
Akbarzadeh
,
M.
,
Jaguemont
,
J.
,
Kalogiannis
,
T.
,
Karimi
,
D.
,
He
,
J.
,
Jin
,
L.
,
Xie
,
P.
,
Van Mierlo
,
J.
, and
Berecibar
,
M.
,
2021
, “
A Novel Liquid Cooling Plate Concept for Thermal Management of Lithium-ion Batteries in Electric Vehicles
,”
Energy Convers. Manage.
,
231
, p.
113862
.
11.
Rao
,
Z.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y.
,
2017
, “
Thermal Performance of Liquid Cooling Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
, pp.
1514
1522
.
12.
Wu
,
X.
,
Zhu
,
Z.
,
Zhang
,
H.
,
Xu
,
S.
,
Fang
,
Y.
, and
Yan
,
Z.
,
2020
, “
Structural Optimization of Light-Weight Battery Module Based on Hybrid Liquid Cooling With High Latent Heat PCM
,”
Int. J. Heat Mass Transfer
,
163
, p.
120495
.
13.
Kong
,
D.
,
Peng
,
R.
,
Ping
,
P.
,
Du
,
J.
,
Chen
,
G.
, and
Wen
,
J.
,
2020
, “
A Novel Battery Thermal Management System Coupling With PCM and Optimized Controllable Liquid Cooling for Different Ambient Temperatures
,”
Energy Convers. Manage.
,
204
, p.
112280
.
14.
Talele
,
V.
,
Patil
,
M. S.
,
Panchal
,
S.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2023
, “
Battery Thermal Runaway Propagation Time Delay Strategy Using Phase Change Material Integrated With Pyro Block Lining: Dual Functionality Battery Thermal Design
,”
J. Energy Storage
,
65
, p.
107253
.
15.
Cheng
,
J.
,
Shuai
,
S.
,
Zhao
,
R.
, and
Tang
,
Z.
,
2022
, “
Numerical Analysis of Heat-Pipe-Based Battery Thermal Management System for Prismatic Lithium-Ion Batteries
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081008
.
16.
Singh
,
L. K.
,
Kumar
,
R.
,
Gupta
,
A. K.
,
Sharma
,
A. K.
, and
Panchal
,
S.
,
2023
, “
Computational Study on Hybrid Air-PCM Cooling Inside Lithium-Ion Battery Packs With Varying Number of Cells
,”
J. Energy Storage
,
67
, p.
107649
.
17.
Kumar Thakur
,
A.
,
Sathyamurthy
,
R.
,
Velraj
,
R.
,
Saidur
,
R.
,
Pandey
,
A. K.
,
Ma
,
Z.
,
Singh
,
P.
, et al
,
2023
, “
A State-of-the Art Review on Advancing Battery Thermal Management Systems for Fast-Charging
,”
Appl. Therm. Eng.
,
226
, p.
120303
.
18.
Yang
,
H.
,
Wang
,
Z.
,
Li
,
M.
,
Ren
,
F.
, and
Feng
,
Y.
,
2023
, “
A Manifold Channel Liquid Cooling System With Low-Cost and High Temperature Uniformity for Lithium-Ion Battery Pack Thermal Management
,”
Therm. Sci. Eng. Prog.
,
41
, p.
101857
.
19.
Tian
,
Z.
,
Huang
,
Z.
,
Xu
,
S.
,
Li
,
K.
, and
Gao
,
W.
,
2023
, “
Direct Liquid Cooling Heat Transfer in Microchannel: Experimental Results and Correlations Assessment
,”
Appl. Therm. Eng.
,
223
, p.
120020
.
20.
Panchal
,
S.
,
Haji Akhoundzadeh
,
M.
,
Raahemifar
,
K.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2019
, “
Heat and Mass Transfer Modeling and Investigation of Multiple LiFePO4/Graphite Batteries in a Pack at Low C-Rates With Water-Cooling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
368
377
.
21.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, “
Parametric Investigation to Optimize the Thermal Management of Pouch Type Lithium-Ion Batteries With Mini-Channel Cold Plates
,”
Int. J. Heat Mass Transfer
,
164
, p.
120568
.
22.
Wu
,
S.
,
Lao
,
L.
,
Wu
,
L.
,
Liu
,
L.
,
Lin
,
C.
, and
Zhang
,
Q.
,
2022
, “
Effect Analysis on Integration Efficiency and Safety Performance of a Battery Thermal Management System Based on Direct Contact Liquid Cooling
,”
Appl. Therm. Eng.
,
201
, p.
117788
.
23.
Chen
,
D.
,
Jiang
,
J.
,
Kim
,
G.
,
Yang
,
C.
, and
Pesaran
,
A.
,
2016
, “
Comparison of Different Cooling Methods for Lithium Ion Battery Cells
,”
Appl. Therm. Eng.
,
94
, pp.
846
854
.
24.
Yates
,
M.
,
Akrami
,
M.
, and
Javadi
,
A. A.
,
2021
, “
Analysing the Performance of Liquid Cooling Designs in Cylindrical Lithium-Ion Batteries
,”
J. Energy Storage
,
33
, p.
100913
.
25.
Tang
,
Z.
,
Ji
,
Y.
,
Yu
,
P.
, and
Cheng
,
J.
,
2023
, “
Investigation on the Thermal Management Performance of a Non-Contact Flow Boiling Cooling System for Prismatic Batteries
,”
J. Energy Storage
,
66
, p.
107499
.
26.
Monika
,
K.
, and
Datta
,
S. P.
,
2022
, “
Comparative Assessment among Several Channel Designs With Constant Volume for Cooling of Pouch-Type Battery Module
,”
Energy Convers. Manage.
,
251
, p.
114936
.
27.
Qian
,
Z.
,
Li
,
Y.
, and
Rao
,
Z.
,
2016
, “
Thermal Performance of Lithium-Ion Battery Thermal Management System by Using Mini-Channel Cooling
,”
Energy Convers. Manage.
,
126
, pp.
622
631
.
28.
Guo
,
R.
, and
Li
,
L.
,
2022
, “
Heat Dissipation Analysis and Optimization of Lithium-Ion Batteries With a Novel Parallel-Spiral Serpentine Channel Liquid Cooling Plate
,”
Int. J. Heat Mass Transfer
,
189
, p.
122706
.
29.
Zuo
,
W.
,
Zhang
,
Y.
,
E
,
J.
,
Li
,
J.
,
Li
,
Q.
, and
Zhang
,
G.
,
2022
, “
Performance Comparison Between Single S-Channel and Double S-Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery
,”
Renewable Energy
,
192
, pp.
46
57
.
30.
Lu
,
Y.
,
Wang
,
J.
,
Liu
,
F.
,
Liu
,
Y.
,
Wang
,
F.
,
Yang
,
N.
,
Lu
,
D.
, and
Jia
,
Y.
,
2022
, “
Performance Optimisation of Tesla Valve-Type Channel for Cooling Lithium-Ion Batteries
,”
Appl. Therm. Eng.
,
212
, p.
118583
.
31.
Zhang
,
Y.
,
Zuo
,
W.
,
E
,
J.
,
Li
,
J.
,
Li
,
Q.
,
Sun
,
K.
,
Zhou
,
K.
, and
Zhang
,
G.
,
2022
, “
Performance Comparison Between Straight Channel Cold Plate and Inclined Channel Cold Plate for Thermal Management of a Prismatic LiFePO4 Battery
,”
Energy
,
248
, p.
123637
.
32.
Al-Hasani
,
H. M.
, and
Freegah
,
B.
,
2022
, “
Influence of Secondary Flow Angle and Pin Fin on Hydro-Thermal Evaluation of Double Outlet Serpentine Mini-Channel Heat Sink
,”
Results Eng.
,
16
, p.
100670
.
33.
Abdulateef
,
A. M.
,
Mat
,
S.
,
Sopian
,
K.
,
Abdulateef
,
J.
, and
Gitan
,
A. A.
,
2017
, “
Experimental and Computational Study of Melting Phase-Change Material in a Triplex Tube Heat Exchanger With Longitudinal/Triangular Fins
,”
Sol. Energy
,
155
, pp.
142
153
.
34.
Zhao
,
D.
,
Lei
,
Z.
, and
An
,
C.
,
2023
, “
Research on Battery Thermal Management System Based on Liquid Cooling Plate With Honeycomb-Like Flow Channel
,”
Appl. Therm. Eng.
,
218
, p.
119324
.
35.
Wang
,
J.
,
Liu
,
X.
,
Liu
,
F.
,
Liu
,
Y.
,
Wang
,
F.
, and
Yang
,
N.
,
2021
, “
Numerical Optimization of the Cooling Effect of the Bionic Spider-Web Channel Cold Plate on a Pouch Lithium-Ion Battery
,”
Case Stud. Therm. Eng.
,
26
, p.
101124
.
36.
Liu
,
H.
,
Shi
,
H.
,
Shen
,
H.
, and
Xie
,
G.
,
2019
, “
The Performance Management of a Li-Ion Battery by Using Tree-Like Mini-Channel Heat Sinks: Experimental and Numerical Optimization
,”
Energy
,
189
, p.
116150
.
37.
Zhuang
,
D.
,
Yang
,
Y.
,
Ding
,
G.
,
Du
,
X.
, and
Hu
,
Z.
,
2020
, “
Optimization of Microchannel Heat Sink With Rhombus Fractal-Like Units for Electronic Chip Cooling
,”
Int. J. Refrig.
,
116
, pp.
108
118
.
38.
Defraeye
,
T.
,
Verboven
,
P.
,
Derome
,
D.
,
Carmeliet
,
J.
, and
Nicolai
,
B.
,
2013
, “
Stomatal Transpiration and Droplet Evaporation on Leaf Surfaces by a Microscale Modelling Approach
,”
Int. J. Heat Mass Transfer
,
65
, pp.
180
191
.
39.
Tan
,
H.
,
Wu
,
L.
,
Wang
,
M.
,
Yang
,
Z.
, and
Du
,
P.
,
2019
, “
Heat Transfer Improvement in Microchannel Heat Sink by Topology Design and Optimization for High Heat Flux Chip Cooling
,”
Int. J. Heat Mass Transfer
,
129
, pp.
681
689
.
40.
Peng
,
Y.
,
Liu
,
W.
,
Chen
,
W.
, and
Wang
,
N.
,
2014
, “
A Conceptual Structure for Heat Transfer Imitating the Transporting Principle of Plant Leaf
,”
Int. J. Heat Mass Transfer
,
71
, pp.
79
90
.
41.
Liu
,
F.
,
Wang
,
J.
,
Liu
,
Y.
,
Wang
,
F.
,
Chen
,
Y.
,
Lu
,
Y.
,
Liu
,
H.
,
Du
,
Q.
,
Sun
,
F.
, and
Yang
,
N.
,
2022
, “
Performance Analysis of Phase-Change Material in Battery Thermal Management With Bionic Leaf Vein Structure
,”
Appl. Therm. Eng.
,
210
, p.
118311
.
42.
Liu
,
F.
,
Chen
,
Y.
,
Qin
,
W.
, and
Li
,
J.
,
2023
, “
Optimal Design of Liquid Cooling Structure With Bionic Leaf Vein Branch Channel for Power Battery
,”
Appl. Therm. Eng.
,
218
, p.
119283
.
43.
Liu
,
F.
,
Lan
,
F.
, and
Chen
,
J.
,
2016
, “
Dynamic Thermal Characteristics of Heat Pipe via Segmented Thermal Resistance Model for Electric Vehicle Battery Cooling
,”
J. Power Sources
,
321
, pp.
57
70
.
44.
Liu
,
Z.
,
Xu
,
G.
,
Xia
,
Y.
, and
Tian
,
S.
,
2023
, “
Numerical Study of Thermal Management of Pouch Lithium-Ion Battery Based on Composite Liquid-Cooled Phase Change Materials With Honeycomb Structure
,”
J. Energy Storage
,
70
, p.
108001
.
45.
An
,
Z.
,
Zhang
,
C.
,
Gao
,
Z.
,
Luo
,
Y.
, and
Dong
,
Y.
,
2022
, “
Heat Dissipation Performance of Hybrid Lithium Battery Thermal Management System Using Bionic Nephrolepis Micro-Channel
,”
Appl. Therm. Eng.
,
217
, p.
119127
.
46.
Huo
,
Y.
,
Rao
,
Z.
,
Liu
,
X.
, and
Zhao
,
J.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
, pp.
387
395
.
47.
Huang
,
Y.
,
Mei
,
P.
,
Lu
,
Y.
,
Huang
,
R.
,
Yu
,
X.
,
Chen
,
Z.
, and
Roskilly
,
A. P.
,
2019
, “
A Novel Approach for Lithium-Ion Battery Thermal Management With Streamline Shape Mini Channel Cooling Plates
,”
Appl. Therm. Eng.
,
157
, p.
113623
.
48.
Monika
,
K.
,
Chakraborty
,
C.
,
Roy
,
S.
,
Dinda
,
S.
,
Singh
,
S. A.
, and
Datta
,
S. P.
,
2021
, “
An Improved Mini-Channel Based Liquid Cooling Strategy of Prismatic LiFePO4 Batteries for Electric or Hybrid Vehicles
,”
J. Energy Storage
,
35
, p.
102301
.
You do not currently have access to this content.