Abstract

In order to reveal the gas–liquid distribution, heat and mass transfer characteristics inside a gravity heat pipe, the bubble behavior and the flow regime transition during the phase-change process were examined by employing a copper-water heat pipe, with the length of 500 mm and Φ22 × 1.5 mm. The results indicate that in the process of phase change, the typical flow regimes of bubble flow, slug flow, and churn flow can be observed in the evaporator, and the presence of bubbles has an obvious disturbance on the flow field. In addition, the discontinuous liquid film plays an important role in the heat transfer mechanism in the condenser, which allows the vapor to contact the wall directly and reduces the heat transfer resistance. The temperature difference between the evaporator and the condenser can be reduced by adjusting the saturation temperature, so as to effectively improve the heat transfer performance of the heat pipe and contribute to the practical engineering design.

References

1.
Cao
,
H.
, and
Wang
,
G.
,
2019
, “
The Research on the Heat Transfer of a Solid-Core Nuclear Reactor Cooled by Heat Pipe Through a Numerical Simulation, Considering the Assembly Gaps
,”
Ann. Nucl. Energy
,
130
, pp.
431
439
.
2.
Mochizuki
,
M.
,
Singh
,
R.
,
Nguyen
,
T.
, and
Nguyen
,
T.
,
2014
, “
Heat Pipe Based Passive Emergency Core Cooling System for Safe Shutdown of Nuclear Power Reactor
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
699
706
.
3.
Oliveira
,
J. L. G.
,
Tecchio
,
C.
,
Paiva
,
K. V.
,
Mantelli
,
M. B. H.
,
Gandolfi
,
R.
, and
Ribeiro
,
L. G. S.
,
2015
, “
Passive Aircraft Cooling Systems for Variable Thermal Conditions
,”
Appl. Therm. Eng.
,
79
, pp.
88
97
.
4.
Matsubara
,
K.
,
Nakakura
,
M.
,
Bellan
,
S.
, and
Maezawa
,
K.
,
2018
, “
Loop Thermosiphon Thermal Collector for Waste Heat Recovery Power Generation
,”
Exp. Heat Transfer
,
32
(
3
), pp.
1
18
.
5.
Wang
,
C.
,
Tang
,
S.
,
Liu
,
X.
,
Su
,
G. H.
,
Tian
,
W.
, and
Qiu
,
S.
,
2020
, “
Experimental Study on Heat Pipe Thermoelectric Generator for Industrial High Temperature Waste Heat Recovery
,”
Appl. Therm. Eng.
,
175
, p.
115299
.
6.
Ziapour
,
B. M.
, and
Khalili
,
M. B.
,
2016
, “
PVT Type of the Two-Phase Loop Mini Tube Thermosyphon Solar Water Heater
,”
Energy Convers. Manage.
,
129
, pp.
54
61
.
7.
Hong
,
S.
,
Tang
,
Y.
, and
Wang
,
S.
,
2018
, “
An Investigation on Optimal External Cooling Condition for an Ultra-Thin Loop Thermosyphon-Based Thermal Management System
,”
Energy Convers. Manage.
,
172
, pp.
328
342
.
8.
Li
,
Y.
,
Guo
,
H.
,
Qi
,
F.
,
Guo
,
Z.
,
Li
,
M.
, and
Bertling Tjernberg
,
L.
,
2021
, “
Investigation on Liquid Cold Plate Thermal Management System With Heat Pipes for LiFePO4 Battery Pack in Electric Vehicles
,”
Appl. Therm. Eng.
,
185
, p.
116382
.
9.
Mu
,
Y.
,
Li
,
G.
,
Yu
,
Q.
,
Ma
,
W.
,
Wang
,
D.
, and
Wang
,
F.
,
2016
, “
Numerical Study of Long-Term Cooling Effects of Thermosyphons Around Tower Footings in Permafrost Regions Along the Qinghai-Tibet Power Transmission Line
,”
Cold Reg. Sci. Technol.
,
121
, pp.
237
249
.
10.
Abdulshaheed
,
A. A.
,
Wang
,
P.
,
Huang
,
G.
,
Zhao
,
Y.
, and
Li
,
C.
,
2021
, “
Filling Ratio Optimization for High-Performance Nanoengineered Copper-Water Heat Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p. 051025.
11.
Jafari
,
D.
,
Filippeschi
,
S.
,
Franco
,
A.
, and
Di Marco
,
P.
,
2017
, “
Unsteady Experimental and Numerical Analysis of a Two-Phase Closed Thermosyphon at Different Filling Ratios
,”
Exp. Therm Fluid Sci.
,
81
, pp.
164
174
.
12.
Shabgard
,
H.
,
Xiao
,
B.
,
Faghri
,
A.
,
Gupta
,
R.
, and
Weissman
,
W.
,
2014
, “
Thermal Characteristics of a Closed Thermosyphon Under Various Filling Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
91
102
.
13.
Lataoui
,
Z.
, and
Jemni
,
A.
,
2017
, “
Experimental Investigation of a Stainless Steel Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
121
, pp.
721
727
.
14.
Xia
,
G.
,
Wang
,
W.
,
Jiao
,
Y.
, and
Ma
,
D.
,
2017
, “
Thermal Characteristics of an Annular Wickless Heat Pipe
,”
Heat Transfer Res.
,
48
(
15
), pp.
1339
1357
.
15.
Pinate
,
W.
,
Rittidech
,
S.
, and
Meena
,
P.
,
2018
, “
Critical Heat Flux of a Two-Phase Closed Thermosyphon With Fins
,”
J. Mech. Sci. Technol.
,
32
(
5
), pp.
2357
2364
.
16.
Gedik
,
E.
,
2016
, “
Experimental Investigation of the Thermal Performance of a Two-Phase Closed Thermosyphon at Different Operating Conditions
,”
Energy Build.
,
127
, pp.
1096
1107
.
17.
Wang
,
H.
,
Bao
,
Y.
,
Zhu
,
S.
,
Liu
,
M.
, and
Rao
,
Z.
,
2021
, “
Experimental Research on Heat Transfer Performance of CO2 Low Temperature Heat Pipe
,”
Int. J. Heat Mass Transfer
,
170
, p.
120987
.
18.
Sarafraz
,
M. M.
,
Hormozi
,
F.
, and
Peyghambarzadeh
,
S. M.
,
2014
, “
Thermal Performance and Efficiency of a Thermosyphon Heat Pipe Working With a Biologically Ecofriendly Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
297
303
.
19.
Li
,
G. Y.
,
Zhang
,
R. C.
,
Zong
,
P. Y.
, and
Zhou
,
X.
,
2022
, “
Influence of Adiabatic Section Length on Performance of Gravity Heat Pipe Under Different Heating Power
,”
J. Eng. Therm. Energy Power.
,
37
(
07
), pp.
70
76
.
20.
Xu
,
Z.
,
Zhang
,
Y.
,
Li
,
B.
,
Wang
,
C.-C.
, and
Li
,
Y.
,
2018
, “
The Influences of the Inclination Angle and Evaporator Wettability on the Heat Performance of a Thermosyphon by Simulation and Experiment
,”
Int. J. Heat Mass Transfer
,
116
, pp.
675
684
.
21.
Alizadehdakhel
,
A.
,
Rahimi
,
M.
, and
Alsairafi
,
A. A.
,
2010
, “
CFD Modeling of Flow and Heat Transfer in a Thermosyphon
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
312
318
.
22.
Kuang
,
Y. W.
,
Wang
,
W.
,
Zhuan
,
R.
, and
Yi
,
C. C.
,
2015
, “
Simulation of Boiling Flow in Evaporator of Separate Type Heat Pipe With Low Heat Flux
,”
Ann. Nucl. Energy
,
75
, pp.
158
167
.
23.
Jouhara
,
H.
,
Fadhl
,
B.
, and
Wrobel
,
L. C.
,
2016
, “
Three-Dimensional CFD Simulation of Geyser Boiling in a Two-Phase Closed Thermosyphon
,”
Int. J. Hydrogen Energy
,
41
(
37
), pp.
16463
16476
.
24.
Colombo
,
M.
, and
Fairweather
,
M.
,
2016
, “
Accuracy of Eulerian–Eulerian, Two-Fluid CFD Boiling Models of Subcooled Boiling Flows
,”
Int. J. Heat Mass Transfer
,
103
, pp.
28
44
.
25.
Liu
,
S.
,
Li
,
J.
, and
Chen
,
Q.
,
2007
, “
Visualization of Flow Pattern in Thermosyphon by ECT
,”
Flow Meas. Instrum.
,
18
(
5
), pp.
216
222
.
26.
Arat
,
H.
,
Arslan
,
O.
,
Ercetin
,
U.
, and
Akbulut
,
A.
,
2021
, “
Experimental Study on Heat Transfer Characteristics of Closed Thermosyphon at Different Volumes and Inclination Angles for Variable Vacuum Pressures
,”
Case Stud. Therm. Eng.
,
26
, p.
101117
.
27.
Arat
,
H.
,
Arslan
,
O.
,
Ercetin
,
U.
, and
Akbulut
,
A.
,
2021
, “
A Comprehensive Numerical Investigation of Unsteady-State Two-Phase Flow in Gravity Assisted Heat Pipe Enclosure
,”
Therm. Sci. Eng. Prog.
,
25
, p.
100993
.
28.
Zhang
,
M.
,
Yan
,
Z.
,
Pei
,
W.
,
Lai
,
Y.
,
Qin
,
Y.
, and
Yu
,
F.
,
2022
, “
Experimental Study on the Startup and Heat Transfer Behaviors of a Two-Phase Closed Thermosyphon at Subzero Temperatures
,”
Int. J. Heat Mass Transfer
,
190
, p.
122283
.
29.
Fadhl
,
B.
,
Wrobel
,
L. C.
, and
Jouhara
,
H.
,
2013
, “
Numerical Modelling of the Temperature Distribution in a Two-Phase Closed Thermosyphon
,”
Appl. Therm. Eng.
,
60
(
1
), pp.
122
131
.
30.
Wu
,
B.
,
Firouzi
,
M.
,
Mitchell
,
T.
,
Rufford
,
T. E.
,
Leonardi
,
C.
, and
Towler
,
B.
,
2017
, “
A Critical Review of Flow Maps for Gas-Liquid Flows in Vertical Pipes and Annuli
,”
Chem. Eng. J.
,
326
, pp.
350
377
.
You do not currently have access to this content.