Abstract

To maintain optimum plant growth temperature (i.e., 25–35 °C), the thermal performance of an earth air tunnel heat exchanger (EATHE)-integrated single-span saw-tooth greenhouse (GH) was assessed in peak summer. With the side and roof vents opened, natural ventilation due to wind and stack effect controlled the air movement and temperature inside the GH. In this configuration, the average temperature inside the GH remained higher than the ambient temperature by 1.5 °C for the entire period of the experiment. For EATHE (installed at a depth of 3.2 m) assisted GH with polyethylene (PE) cover, the air from the EATHE outlet entered inside the GH at 33 °C, and the average temperature within the GH was maintained at 4 °C lower than the ambient temperature. When the shading net was installed over the PE cover with the EATHE, the transmitted radiations into the GH were reduced from the roof, and the inside temperature was maintained 7 °C below the average ambient temperature (i.e., 45 °C). The measured temperatures along the length of the EATHE were compared with the indigenously developed code named PEAT (performance analysis of earth–air tunnel) and found to be in good agreement within ±4.5% deviation. The temperature distribution inside the GH was predicted using a computational fluid dynamics (CFD) model in ansys fluent with ±5% deviation from experimental results. With parametric analysis from the PEAT code and CFD model, the desired depth of the EATHE and the mass flowrate of air required to bring down the GH indoor temperatures to the optimum plant growth range were determined.

References

1.
Ghani
,
S.
,
Bakochristou
,
F.
,
ElBialy
,
E. M. A. A.
,
Gamaledin
,
S. M. A.
,
Rashwan
,
M. M.
,
Abdelhalim
,
A. M.
, and
Ismail
,
S. M.
,
2019
, “
Design Challenges of Agricultural Greenhouses in Hot and Arid Environments—A Review
,”
Eng. Agric. Environ. Food
,
12
(
1
), pp.
48
70
.
2.
Sase
,
S.
,
Takakura
,
T.
, and
Nara
,
M.
,
1984
, “
Wind Tunnel Testing on Airflow and Temperature Distribution of a Naturally Ventilated Greenhouse
,”
Acta Horticulturae
,
148
, pp.
329
336
.
3.
Sethi
,
V. P.
,
Dubey
,
R. K.
, and
Dhath
,
A. S.
,
2009
, “
Design and Evaluation of Modified Screen Net House for Off-Season Vegetable Raising in Composite Climate
,”
Energy Convers. Manage.
,
50
(
12
), pp.
3112
3128
.
4.
Menhoudj
,
S.
,
Mokhtari
,
A.-M.
,
Benzaama
,
M.-H.
,
Maalouf
,
C.
,
Lachi
,
M.
, and
Makhlouf
,
M.
,
2018
, “
Study of the Energy Performance of an Earth–Air Heat Exchanger for Refreshing Buildings in Algeria
,”
Energy Build.
,
158
, pp.
1602
1612
.
5.
Soni
,
S. K.
,
Pandey
,
M.
, and
Bartaria
,
V. N.
,
2015
, “
Ground Coupled Heat Exchangers: A Review and Applications
,”
Renew. Sustain. Energy Rev.
,
47
, pp.
83
92
.
6.
Yang
,
L.-H.
,
Liang
,
J.-D.
,
Hsu
,
C.-Y.
,
Yang
,
T.-H.
, and
Chen
,
S.-L.
,
2019
, “
Enhanced Efficiency of Photovoltaic Panels by Integrating a Spray Cooling System With Shallow Geothermal Energy Heat Exchanger
,”
Renew. Energy
,
134
, pp.
970
981
.
7.
Soni
,
S. K.
,
Pandey
,
M.
, and
Bartaria
,
V. N.
,
2016
, “
Energy Metrics of a Hybrid Earth Air Heat Exchanger System for Summer Cooling Requirements
,”
Energy Build.
,
129
, pp.
1
8
.
8.
Ramírez-Dávila
,
L.
,
Xamán
,
J.
,
Arce
,
J.
,
Álvarez
,
G.
, and
Hernández-Pérez
,
I.
,
2014
, “
Numerical Study of Earth-to-Air Heat Exchanger for Three Different Climates
,”
Energy Build.
,
76
, pp.
238
248
.
9.
Amanowicz
,
Ł.
, and
Wojtkowiak
,
J.
,
2020
, “
Thermal Performance of Multi-pipe Earth-to-Air Heat Exchangers Considering the Non-uniform Distribution of Air Between Parallel Pipes
,”
Geothermics
,
88
, p.
101896
.
10.
Bansal
,
V.
,
Misra
,
R.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2009
, “
Performance Analysis of Earth–Pipe–Air Heat Exchanger for Winter Heating
,”
Energy Build.
,
41
(
11
), pp.
1151
1154
.
11.
Bansal
,
V.
,
Misra
,
R.
,
Agrawal
,
G. D.
, and
Mathur
,
J.
,
2010
, “
Performance Analysis of Earth–Pipe–Air Heat Exchanger for Summer Cooling
,”
Energy Build.
,
42
(
5
), pp.
645
648
.
12.
Mathur
,
A.
,
Srivastava
,
A.
,
Agrawal
,
G. D.
,
Mathur
,
S.
, and
Mathur
,
J.
,
2015
, “
CFD Analysis of EATHE System Under Transient Conditions for Intermittent Operation
,”
Energy Build.
,
87
, pp.
37
44
.
13.
Xamán
,
J.
,
Hernández-Pérez
,
I.
,
Arce
,
J.
,
Álvarez
,
G.
,
Ramírez-Dávila
,
L.
, and
Noh-Pat
,
F.
,
2014
, “
Numerical Study of Earth-to-Air Heat Exchanger: The Effect of Thermal Insulation
,”
Energy Build.
,
85
, pp.
356
361
.
14.
Agrawal
,
K. K.
,
Agrawal
,
G. D.
,
Misra
,
R.
,
Bhardwaj
,
M.
, and
Jamuwa
,
D. K.
,
2018
, “
A Review on Effect of Geometrical, Flow and Soil Properties on the Performance of Earth Air Tunnel Heat Exchanger
,”
Energy Build.
,
176
, pp.
120
138
.
15.
Papadakis
,
G.
,
Briassoulis
,
D.
,
Mugnozza
,
G. S.
,
Vox
,
G.
,
Feuilloley
,
P.
, and
Stoffers
,
J. A.
,
2000
, “
Review Paper (SE—Structures and Environment): Radiometric and Thermal Properties of, and Testing Methods for, Greenhouse Covering Materials
,”
J. Agric. Eng. Res.
,
77
(
1
), pp.
7
38
.
16.
Boulard
,
T.
, and
Wang
,
S.
,
2002
, “
Experimental and Numerical Studies on the Heterogeneity of Crop Transpiration in a Plastic Tunnel
,”
Comput. Electron. Agric.
,
34
(
1–3
), pp.
173
190
.
17.
Ghosal
,
M. K.
,
Tiwari
,
G. N.
,
Das
,
D. K.
, and
Pandey
,
K. P.
,
2005
, “
Modeling and Comparative Thermal Performance of Ground Air Collector and Earth Air Heat Exchanger for Heating of Greenhouse
,”
Energy Build.
,
37
(
6
), pp.
613
621
.
18.
Kittas
,
C.
,
Karamanis
,
M.
, and
Katsoulas
,
N.
,
2005
, “
Air Temperature Regime in a Forced Ventilated Greenhouse With Rose Crop
,”
Energy Build.
,
37
(
8
), pp.
807
812
.
19.
Sethi
,
V. P.
, and
Sharma
,
S. K.
,
2007
, “
Thermal Modeling of a Greenhouse Integrated to an Aquifer Coupled Cavity Flow Heat Exchanger System
,”
Sol. Energy
,
81
(
6
), pp.
723
741
.
20.
Teitel
,
M.
, and
Wenger
,
E.
,
2014
, “
Air Exchange and Ventilation Efficiencies of a Monospan Greenhouse With One Inflow and One Outflow Through Longitudinal Side Openings
,”
Biosyst. Eng.
,
119
, pp.
98
107
.
21.
Nebbali
,
R.
,
Roy
,
J. C.
, and
Boulard
,
T.
,
2012
, “
Dynamic Simulation of the Distributed Radiative and Convective Climate Within a Cropped Greenhouse
,”
Renew. Energy
,
43
, pp.
111
129
.
22.
Piscia
,
D.
,
Muñoz
,
P.
,
Panadès
,
C.
, and
Montero
,
J. I.
,
2015
, “
A Method of Coupling CFD and Energy Balance Simulations to Study Humidity Control in Unheated Greenhouses
,”
Comput. Electron. Agric.
,
115
, pp.
129
141
.
23.
Mobtaker
,
H. G.
,
Ajabshirchi
,
Y.
,
Ranjbar
,
S. F.
, and
Matloobi
,
M.
,
2019
, “
Simulation of Thermal Performance of Solar Greenhouse in North-West of Iran: An Experimental Validation
,”
Renew. Energy
,
135
, pp.
88
97
.
24.
Senhaji
,
A.
,
Mouqallid
,
M.
, and
Majdoubi
,
H.
,
2019
, “
CFD Assisted Study of Multi-chapels Greenhouse Vents Openings Effect on Inside Airflow Circulation and Microclimate Patterns
,”
Open J. Fluid Dyn.
,
9
(
2
), pp.
119
139
.
25.
Santamouris
,
M.
,
Mihalakakou
,
G.
,
Balaras
,
C. A.
,
Argiriou
,
A.
,
Asimakopoulos
,
D.
, and
Vallindras
,
M.
,
1995
, “
Use of Buried Pipes for Energy Conservation in Cooling of Agricultural Greenhouses
,”
Sol. Energy
,
55
(
2
), pp.
111
124
.
26.
Tiwari
,
G. N.
,
Akhtar
,
M. A.
,
Shukla
,
A.
, and
Emran Khan
,
M.
,
2006
, “
Annual Thermal Performance of Greenhouse With an Earth–Air Heat Exchanger: An Experimental Validation
,”
Renew. Energy
,
31
(
15
), pp.
2432
2446
.
27.
Ozgener
,
O.
,
Ozgener
,
L.
, and
Goswami
,
D. Y.
,
2011
, “
Experimental Prediction of Total Thermal Resistance of a Closed Loop EAHE for Greenhouse Cooling System
,”
Int. Commun. Heat Mass Transfer
,
38
(
6
), pp.
711
716
.
28.
Ozgener
,
O.
, and
Ozgener
,
L.
,
2011
, “
Determining the Optimal Design of a Closed Loop Earth to Air Heat Exchanger for Greenhouse Heating by Using Exergoeconomics
,”
Energy Build.
,
43
(
4
), pp.
960
965
.
29.
Mongkon
,
S.
,
Thepa
,
S.
,
Namprakai
,
P.
, and
Pratinhong
,
N.
,
2014
, “
Cooling Performance Assessment of Horizontal Earth Tube System and Effect on Planting in Tropical Greenhouse
,”
Energy Convers. Manage.
,
78
, pp.
225
236
.
30.
Yang
,
L.-H.
,
Huang
,
B.-H.
,
Hsu
,
C.-Y.
, and
Chen
,
S.-L.
,
2019
, “
Performance Analysis of an Earth–Air Heat Exchanger Integrated Into an Agricultural Irrigation System for a Greenhouse Environmental Temperature-Control System
,”
Energy Build.
,
202
, p.
109381
.
31.
Yadav
,
S.
,
Panda
,
S. K.
,
Tiwari
,
G. N.
,
Al-Helal
,
I. M.
,
Alsadon
,
A. A.
,
Shady
,
M. R.
, and
Tiwari
,
A.
,
2022
, “
Semi-Transparent Photovoltaic Thermal Greenhouse System Combined With Earth Air Heat Exchanger for Hot Climatic Condition
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081007
.
32.
Singhal
,
S.
,
Yadav
,
A. K.
, and
Prakash
,
R.
,
2023
, “
Numerical Modelling of an Earth-Air-Tunnel Assisted Single Span Saw-Tooth Greenhouse for Tropical Climate
,”
Int. J. Therm. Sci.
,
187
, p.
108138
.
33.
Baeza
,
E. J.
,
Pérez-Parra
,
J. J.
,
Montero
,
J. I.
,
Bailey
,
B. J.
,
López
,
J. C.
, and
Gázquez
,
J. C.
,
2009
, “
Analysis of the Role of Sidewall Vents on Buoyancy-Driven Natural Ventilation in Parral-Type Greenhouses With and Without Insect Screens Using Computational Fluid Dynamics
,”
Biosyst. Eng.
,
104
(
1
), pp.
86
96
.
34.
Beckwith
,
T. G.
,
Marangoni
,
R. D.
, and
Lienhard
,
J. H.
,
1993
,
Mechanical Measurements
,
Addison-Wesley
,
Reading, MA
.
You do not currently have access to this content.