Abstract

The trend of miniaturization and intgration of the electronic device has put forward higher requirements on efficiency of heat radiating, which can hardly be satisfied by the traditional forced convection heat dissipation method. In this paper, the strategy of topology optimization technique is adopted to greatly improve the heat dissipation efficiency of a semiconductor ignition device. The penalization method is used to implement the topology optimization process. Three kinds of objective functions of thermal compliance, temperature variance and geometric average temperature were separately applied in the topological optimization of two typical uniform heat generation cases, and the resulted topologically optimization results were analyzed and compared. Based on the two benchmark cases, the appropriate objective function was selected to conduct structural optimization of semiconductor bridge ignition devices with the aim of making the highest temperature in the design domain the lowest possible. Additionally, a parametric study on the effect of thermal conductivity on topology optimization results was conducted, which leads to a design suggestion beneficial for heat dissipation and material selection.

References

1.
Chen
,
J.
,
Hua
,
X.
, and
Zhang
,
X.
,
2017
, “
Two-Dimensional Numerical Simulation of Thermo-Electric Coupling Model in Semiconductor Bridge Ignition System
,”
Int. J. Heat Mass Transf.
,
113
, pp.
195
202
.
2.
Chen
,
J.
, and
Zhang
,
X.
,
2019
, “
Nanoscale Size Effect and Phonon Properties of Silicon Material Through Simple Spectral Energy Density Analysis Based on Molecular Dynamics
,”
J. Phys.: Condens. Matter
,
31
(
42
), p.
425701
.
3.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Method Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
4.
Maute
,
K.
, and
Allen
,
M.
,
2004
, “
Conceptual Design of Aeroelastic Structures by Topology Optimization
,”
Struct. Multidiscip. Optim.
,
27
(
1–2
), pp.
27
42
.
5.
Shobeiri
,
V.
,
2015
, “
Topology Optimization Using Bi-Directional Evolutionary Structural Optimization Based on the Element-Free Galerkin Method
,”
Eng. Optim.
,
48
(
3
), pp.
380
396
.
6.
Sigmund
,
O.
,
2014
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
7.
Borrvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Meth. Fluids
,
41
(
1
), pp.
77
107
.
8.
Munk
,
D. J.
,
Vio
,
G. A.
, and
Steven
,
G. P.
,
2015
, “
Topology and Shape Optimization Methods Using Evolutionary Algorithms: A Review
,”
Struct. Multidiscip. Optim.
,
52
(
3
), pp.
613
631
.
9.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
2001
, “
On the Validity of ESO Type Methods in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
21
(
1
), pp.
80
83
.
10.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
1999
, “
Displacement Minimization of Thermoelastic Structures by Evolutionary Thickness Design
,”
Comput. Method Appl. Mech. Eng.
,
179
(
3–4
), pp.
361
378
.
11.
Li
,
W.
,
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
,
2003
, “
An Evolutionary Approach to Elastic Contact Optimization of Frame Structures
,”
Finite Elem. Anal. Des.
,
40
(
1
), pp.
61
81
.
12.
Huang
,
X.
, and
Xie
,
Y. M.
,
2007
, “
Convergent and Mesh-Independent Solutions for the Bi-Directional Evolutionary Structural Optimization Method
,”
Finite Elem. Anal. Des.
,
43
(
14
), pp.
1039
1049
.
13.
Huang
,
X.
, and
Xie
,
Y. M.
,
2011
, “
Evolutionary Topology Optimization of Continuum Structures Including Design-Dependent Self-Weight Loads
,”
Finite Elem. Anal. Des.
,
47
(
8
), pp.
942
948
.
14.
Zhang
,
Y.
, and
Liu
,
S.
,
2008
, “
Design of Conducting Paths Based on Topology Optimization
,”
Heat Mass Transfer
,
44
(
10
), pp.
1217
1227
.
15.
Wu
,
S.
,
Zhang
,
Y.
, and
Liu
,
S.
,
2019
, “
Topology Optimization for Minimizing the Maximum Temperature of Transient Heat Conduction Structure
,”
Struct. Multidiscip. Optim.
,
60
(
1
), pp.
69
82
.
16.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transf.
,
52
(
11–12
), pp.
2721
2732
.
17.
Zhang
,
B.
,
Zhu
,
J.
, and
Gao
,
L.
,
2020
, “
Topology Optimization Design of Nanofluid-Cooled Microchannel Heat Sink With Temperature-Dependent Fluid Properties
,”
Appl. Therm. Eng.
,
176
, p.
115354
.
18.
Zeng
,
S.
,
Kanargi
,
B.
, and
Lee
,
P. S.
,
2018
, “
Experimental and Numerical Investigation of a Mini Channel Forced Air Heat Sink Designed by Topology Optimization
,”
Int. J. Heat Mass Transf.
,
121
, pp.
663
679
.
19.
Ge
,
Y.
,
Wang
,
S.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Optimal Shape Design of a Minichannel Heat Sink Applying Multi-Objective Optimization Algorithm and Three-Dimensional Numerical Method
,”
Appl. Therm. Eng.
,
148
, pp.
120
128
.
20.
Deng
,
S.
, and
Suresh
,
K.
,
2017
, “
Stress Constrained Thermo-Elastic Topology Optimization With Varying Temperature Fields via Augmented Topological Sensitivity Based Level-Set
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1413
1427
.
21.
Soprani
,
S.
,
Haertel
,
J. H. K.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2016
, “
A Design Approach for Integrating Thermoelectric Devices Using Topology Optimization
,”
Appl. Energ.
,
176
, pp.
49
64
.
22.
Matsumori
,
T.
,
Kawamoto
,
A.
, and
Kondoh
,
T.
,
2019
, “
Topology Optimization for Thermal Stress Reduction in Power Semiconductor Module
,”
Struct. Multidiscip. Optim.
,
60
(
6
), pp.
2615
2620
.
23.
Lohan
,
D. J.
,
Dede
,
E. M.
, and
Allison
,
J. T.
,
2020
, “
A Study on Practical Objectives and Constraints for Heat Conduction Topology Optimization
,”
Struct. Multidiscip. Optim.
,
61
(
2
), pp.
475
489
.
24.
Pedersen
,
P.
, and
Pedersen
,
N. L.
,
2010
, “
Strength Optimized Designs of Thermoelastic Structures
,”
Struct. Multidiscip. Optim.
,
42
(
5
), pp.
681
691
.
25.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
,
2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transf.
,
47
(
23
), pp.
5071
5083
.
26.
Xu
,
L.
,
Pu
,
L.
,
Zhang
,
S.
,
Nian
,
L.
, and
Li
,
Y.
,
2020
, “
Structure Optimization Design of Ground Heat Exchanger by Topology Method to Mitigate the Geothermal Imbalance
,”
Appl. Therm. Eng.
,
170
, p.
115023
.
27.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2016
, “
Stress-Based Design of Thermal Structures via Topology Optimization
,”
Struct. Multidiscip. Optim.
,
53
(
2
), pp.
253
270
.
28.
Benson
,
D. A.
,
Larsen
,
M. E.
,
Renlund
,
A. M.
,
Trott
,
W. M.
, and
Bickes
,
R. W.
,
1987
, “
Semiconductor Bridge: A Plasma Generator for the Ignition of Explosives
,”
J. Appl. Phys.
,
62
(
5
), pp.
1622
1632
.
29.
Chen
,
J.
, and
Zhang
,
X.
,
2019
, “
Non-Fourier Effects on the Temperature Time-Dependence of a Silicon Igniter
,”
IEEE Electron Device Lett.
,
40
(
6
), pp.
854
857
.
30.
Takezawa
,
A.
,
Yoon
,
G. H.
,
Jeong
,
S. H.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2014
, “
Structural Topology Optimization with Strength and Heat Conduction Constraints
,”
Comput. Method Appl. Mech. Eng.
,
276
, pp.
341
361
.
31.
Wu
,
T.
,
Liu
,
K.
, and
Tovar
,
A.
,
2017
, “
Multiphase Topology Optimization of Lattice Injection Molds
,”
Comput. Struct.
,
192
, pp.
71
82
.
32.
Wu
,
C.
,
Fang
,
J.
, and
Li
,
Q.
,
2019
, “
Multi-Material Topology Optimization for Thermal Buckling Criteria
,”
Comput. Method Appl. Mech. Eng.
,
346
, pp.
1136
1155
.
You do not currently have access to this content.