Abstract

Based on energy-balance equations for a photo-voltaic thermal (PVT) active solar distillation system, a modified Hottel-Whillier-Bliss (HWB) analytical characteristic equation as a function of design and climatic parameters has been derived in the present article. It has been found that there is a significant difference between characteristic equations for PVT-based active solar distillation and the conventional flat plate collector (FPC). It is due to (i) opposite nature of loss factor from inside surface to ambient through glass cover and (ii) temperature dependence of the evaporative heat transfer coefficient between water surface and condensing cover in the solar distillation system. Numerical computations have been obtained for the characteristic curve of the proposed active solar distillation system and flat plate collector under the condition of a typical day in New Delhi, India. Further, the effect of performance parameters such as packing factor, electrical efficiency of individual PVT collectors, and water mass have also been studied for the proposed active PVT solar distillation system. Moreover, daily yield of portable water has been found to be 7.34 kg/m2 at n = 5 and βc = 0.25 which is 100.5% higher than the daily yield of 3.66 kg/m2 obtained at n = 1, βc. = 0.89.

References

1.
Boubekri
,
M.
,
Chaker
,
A.
, and
Saadi
,
S.
,
2021
, “
Modeling and Simulation of a Vertical Multi-Effect Diffusion Solar Still Coupled With a Tracking Solar System and a PV/T-SWH System
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051003
.
2.
Khan
,
J. R.
,
Klausner
,
J. F.
,
Ziegler
,
D. P.
, and
Garimella
,
S. S.
,
2010
, “
Diffusion Driven Desalination for Simultaneous Fresh Water Production and Desulfurization
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
3
), p.
031006
.
3.
Alkhulaifi
,
Y.
,
Mokheimer
,
E. M. A.
, and
AlSadah
,
J. H.
,
2019
, “
Performance Optimization of Mechanical Vapor Compression Desalination System Using a Water-Injected Twin-Screw Compressor
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042008
.
4.
Arias
,
F. J.
,
2018
, “
Deliberate Salinization of Seawater for Desalination of Seawater
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032004
.
5.
Khalifa
,
A. E.
,
2021
, “
Membrane Distillation Desalination System With Gap Circulation and Cooling Using a Built-in Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012102
.
6.
Wong
,
K. V.
,
2016
, “
Sustainable Engineering in the Global Energy Sector
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
024701
.
7.
Dubey
,
A.
, and
Arora
,
A.
,
2021
, “
High-Temperature Distillation Using N-Parallel Evacuated Tube Collector Integrated With Double Slope Solar Still in Force Mode
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
3
), p.
031002
.
8.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.
9.
Meraj
,
M.
,
Mahmood
,
S. M.
,
Khan
,
M. E.
,
Azhar
,
M.
, and
Tiwari
,
G. N.
,
2021
, “
Effect of N-Photovoltaic Thermal Integrated Parabolic Concentrator on Milk Temperature for Pasteurization: A Simulation Study
,”
Renew. Energy
,
163
, pp.
2153
2164
.
10.
Malik
,
M. A. S.
,
Tiwari
,
G. N.
,
Kumar
,
A.
, and
Sodha
,
M. S.
,
1982
,
Solar Distillation: A Practical Study of a Wide Range of Stills and Their Optimum Design, Construction and Performance
,
Pergamon Press
,
Oxford
.
11.
Lawrence
,
S. A.
, and
Tiwari
,
G. N.
,
1990
, “
Theoretical Evaluation of Solar Distillation Under Natural Circulation With Heat Exchanger
,”
Energy Convers. Manag.
,
30
(
3
), pp.
205
213
.
12.
Tripathi
,
R.
, and
Tiwari
,
G. N.
,
2004
, “
Performance Evaluation of a Solar Still by Using the Concept of Solar Fractionation
,”
Desalination
,
169
(
1
), pp.
69
80
.
13.
Kabeel
,
A. E.
,
Manokar
,
A. M.
,
Sathyamurthy
,
R.
,
Winston
,
D. P.
,
El-Agouz
,
S. A.
, and
Chamkha
,
A. J.
,
2019
, “
A Review on Different Design Modifications Employed in Inclined Solar Still for Enhancing the Productivity
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031007
.
14.
Kowalski
,
G. J.
,
Modaresifar
,
M.
, and
Zenouzi
,
M.
,
2015
, “
Significance of Transient Exergy Terms in a New Tray Design Solar Desalination Device
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011201
.
15.
Muthu Manokar
,
A.
,
Prince Winston
,
D.
,
Kabeel
,
A. E.
,
El-Agouz
,
S. A.
,
Sathyamurthy
,
R.
,
Arunkumar
,
T.
,
Madhu
,
B.
, and
Ahsan
,
A.
,
2018
, “
Integrated PV/T Solar Still- A Mini-Review
,”
Desalination
,
435
, pp.
259
267
.
16.
Tiwari
,
G. N.
,
Mishra
,
A. K.
,
Meraj
,
M.
,
Ahmad
,
A.
, and
Khan
,
M. E.
,
2020
, “
Effect of Shape of Condensing Cover on Energy and Exergy Analysis of a PVT-CPC Active Solar Distillation System
,”
Sol. Energy
,
205
, pp.
113
125
.
17.
Pansal
,
K.
,
Ramani
,
B.
,
Sadasivuni
,
K. K.
,
Panchal
,
H.
,
Manokar
,
M.
,
Sathyamurthy
,
R.
,
Kabeel
,
A. E.
,
Suresh
,
M.
, and
Israr
,
M.
,
2020
, “
Use of Solar Photovoltaic With Active Solar Still to Improve Distillate Output: A Review
,”
Groundw. Sustain. Dev.
,
10
,
100341
.
18.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
19.
Abu-Arabi
,
M.
,
Al-harahsheh
,
M.
,
Ahmad
,
M.
, and
Mousa
,
H.
,
2020
, “
Theoretical Modeling of a Glass-Cooled Solar Still Incorporating PCM and Coupled to Flat Plate Solar Collector
,”
J. Energy Storage
,
29
,
101372
.
20.
Yousef
,
M. S.
, and
Hassan
,
H.
,
2019
, “
Energetic and Exergetic Performance Assessment of the Inclusion of Phase Change Materials (PCM) in a Solar Distillation System
,”
Energy Convers. Manag.
,
179
, pp.
349
361
.
21.
Taghvaei
,
H.
,
Taghvaei
,
H.
,
Jafarpur
,
K.
,
Karimi Estahbanati
,
M. R.
,
Feilizadeh
,
M.
,
Feilizadeh
,
M.
, and
Seddigh Ardekani
,
A.
,
2014
, “
A Thorough Investigation of the Effects of Water Depth on the Performance of Active Solar Stills
,”
Desalination
,
347
, pp.
77
85
.
22.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2017
, “
Performance Analysis of Basin Type Solar Stills Integrated With N Identical Photovoltaic Thermal (PVT) Compound Parabolic Concentrator (CPC) Collectors: A Comparative Study
,”
Sol. Energy
,
142
, pp.
144
158
.
23.
Tiwari
,
G. N.
, and
Sahota
,
L.
,
2017
, “
Review on the Energy and Economic Efficiencies of Passive and Active Solar Distillation Systems
,”
Desalination
,
401
, pp.
151
179
.
24.
Tiwari
,
G. N.
,
2002
,
Solar Energy: Fundamentals, Design, Modelling and Applications, Revised Edition
,
Narosa Publishing House
,
New Delhi, India
.
25.
Dev
,
R.
,
Singh
,
H. N.
, and
Tiwari
,
G. N.
,
2011
, “
Characteristic Equation of Double Slope Passive Solar Still
,”
Desalination
,
267
(
2
), pp.
261
266
.
26.
Gupta
,
V. S.
,
Singh
,
D. B.
,
Mishra
,
R. K.
,
Sharma
,
S. K.
, and
Tiwari
,
G. N.
,
2018
, “
Development of Characteristic Equations for PVT-CPC Active Solar Distillation System
,”
Desalination
,
445
, pp.
266
279
.
27.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2013
,
Solar Engineering of Thermal Processes: Fourth Edition.
,
John Wiley & Sons
,
Hoboken, NJ
.
28.
Tiwari
,
G. N.
,
Meraj
,
M.
,
Khan
,
M. E.
,
Mishra
,
R. K.
, and
Garg
,
V.
,
2018
, “
Improved Hottel-Whillier-Bliss Equation for N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector
,”
Sol. Energy
,
166
, pp.
203
212
.
29.
Evans
,
D. L.
,
1981
, “
Simplified Method for Predicting Photovoltaic Array Output
,”
Sol. Energy
,
27
(
6
), pp.
555
560
.
You do not currently have access to this content.