Abstract

In the current work, for the simultaneous attainment of enhancement and uniformity in temperature distribution in case of quenching performed in transition and nucleate boiling regimes, the heat treatment is performed by adopting thin coolant flow boiling methodology which depicts high replacement rate of vapor and low coolant consumption rate in comparison with the other cooling methodology such as jet and spray cooling. In addition to the above, the simultaneous flow over the entire plate reduces the intensity of nonuniformity in cooling. The analysis of experimental results in case of thin-film flow boiling clearly indicates significant improvement in initial heat flux (IHF) and critical heat flux (CHF) in comparison with low mass flux jet and spray coolings. The comparative study also ensures that better enhancement and uniformity in cooling are achieved in the current case in comparison with the process such as low mass flux spray and jet coolings. Furthermore, the calculation indicates very low coolant consumption characteristic in comparison with the others, the abovementioned parameters (CHF and IHF) alter due to the change in surface tension, viscosity, specific heat, and thermal conductivity of the coolant and therefore, the role of abovementioned coolant properties in case of thin-film boiling is monitored. For this, various additives such as sodium dodecyl sulfate (SDS), polyethylene glycol (PEG), Polyoxyethylene 20 Sorbitan Monolaurate (Tween 20), and ethanol were used. In the present work, the analysis discloses that for the better Nusselt number the optimum Reynolds number is 1953 and Ohensorge number and Prandtl number are 0.0032 and 5.85, respectively.

References

1.
Berenson
,
P. J.
,
1961
, “
Film-Boiling Heat Transfer From a Horizontal Surface
,”
ASME J. Heat Transfer
,
83
(
3
), pp.
351
356
. 10.1115/1.3682280
2.
Klimenko
,
V. V.
,
1981
, “
Film Boiling on a Horizontal Plate—New Correlation
,”
Int. J. Heat Mass Transfer
,
24
(
1
), pp.
69
79
. 10.1016/0017-9310(81)90094-6
3.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1997
, “
Film Boiling Heat Transfer of Droplet Streams and Sprays
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2579
2593
. 10.1016/S0017-9310(96)00297-9
4.
Choi
,
K. J.
, and
Yao
,
S. C.
,
1987
, “
Mechanisms of Film Boiling Heat Transfer of Normally Impacting Spray
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
311
318
. 10.1016/0017-9310(87)90119-0
5.
Cho
,
M. J.
,
Thomas
,
B. G.
, and
Lee
,
P. J.
,
2008
, “
Three-Dimensional Numerical Study of Impinging Water Jets in Runout Table Cooling Processes
,”
Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci.
,
39
(
4
), pp.
593
602
. 10.1007/s11663-008-9160-8
6.
Han
,
B.
,
Liu
,
X.
,
Wang
,
G.
, and
She
,
G.
,
2005
, “
Development of Cooling Process Control Technique in Hot Strip Mill
,”
J. Iron Steel Res. Int.
,
12
(
1
), pp.
12
16
.
7.
Lucas
,
A.
,
Simon
,
P.
,
Bourdon
,
G.
,
Herman
,
J.-C.
,
Riche
,
P.
,
Neutjens
,
J.
, and
Harlet
,
P.
,
2016
, “
Metallurgical Aspects of Ultra Fast Cooling in Front of the Down-Coiler
,”
Steel Res. Int.
,
75
(
2
), pp.
139
146
. 10.1002/srin.200405939
8.
Barik
,
K.
,
Chitransh
,
S.
,
Pati
,
A. R.
,
Swain
,
B.
,
Behera
,
A.
, and
Mohapatra
,
S. S.
,
2020
, “
The Enhancement of Laminar Jet Cooling Effectiveness at Very High Surface Temperature by Using Al2O3 Nanofluid as a Coolant
,”
Heat Transfer
,
49
(
3
), pp.
1554
1567
.
9.
Das
,
L.
,
Swain
,
B.
,
Munshi
,
B.
,
Mohapatra
,
S. S.
, and
Behera
,
A.
,
2019
, “
The SDS and Steel Surface Interaction Behaviour in Case of High Mass Flux Spray Cooling From Very High Temperature
,”
Corros. Sci.
,
157
, pp.
508
517
.
10.
Pati
,
A. R.
,
Swain
,
B.
, and
Mohapatra
,
S. S.
,
2020
, “
The Boiling Phenomena and Their Proper Identification and Discrimination Methodology
,”
Sci. Rep.
,
10
(
1
), p.
8381
.
11.
Barik
,
K.
,
Swain
,
B.
,
Pati
,
A. R.
,
Chitransh
,
S.
, and
Mohapatra
,
S. S.
,
2020
, “
Co-Axial Laminar Multiphase Jet: A Novel Methodology for the Attainment Enhancement in Transition Boiling Regime
,”
J. Therm. Sci. Eng. Appl.
,
13
(
1
), pp.
1
11
. 10.1115/1.4047165
12.
Gottfried
,
B. S.
,
Lee
,
C. J.
, and
Bell
,
K. J.
,
1966
, “
The Leidenfrost Phenomenon: Film Boiling of Liquid Droplets on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
9
(
11
), pp.
1167
1188
. 10.1016/0017-9310(66)90112-8
13.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
. 10.1115/1.2826080
14.
Walker
,
J.
,
1988
,
Physics (College Park, MD)
, 3, Vol.
10
,
Wiley, New York, 1988
, pp.
1
5
.
15.
Mills
,
A. A.
,
Sharrock
,
N. F.
, and
Walker
,
J.
,
1986
, “
Rate of Evaporation of N-Alcohols From a Hot Surface: Nukiyama and Leidenfrost Temperatures
,”
Eur. J. Phys.
,
7
(
1
), pp.
52
54
. 10.1088/0143-0807/7/1/010
16.
Lily
,
Munshi
,
B.
,
Barik
,
K.
, and
Mohapatra
,
S. S.
,
2019
, “
The Role of Surface Tension and Viscosity of the Coolant on Spray Cooling Performance of Red-Hot Inclined Steel Plate
,”
Int. J. Heat Mass Transfer
,
130
, pp.
496
513
. 10.1016/j.ijheatmasstransfer.2018.07.028
17.
Bhatt
,
N. H.
,
Pati
,
A. R.
,
Das
,
L.
,
Panda
,
A.
,
Varshney
,
P.
,
Kumar
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2018
, “
The Diminishment of Specific Heat and Surface Tension of Coolant Droplet in a Dropwise Evaporation Process: A Novel Methodology to Enhance the Heat Transfer Rate
,”
Exp. Heat Transfer
,
31
(
4
), pp.
355
372
. 10.1080/08916152.2017.1419314
18.
Tinker
,
S. C.
,
Di Marzo
,
M.
,
Tartarini
,
P.
,
Chandra
,
S.
,
Quiao
,
Y. M.
,
Lund
,
D. P.
, and
Angell
,
E. A.
,
1995
, “
Dropwise Evaporative Cooling: Effect of Dissolved Gases and Surfactants
,”
International Conference on Fire Research and Engineering
,
Boston
,
September
.
19.
Koopal
,
L. K.
,
2012
, “
Wetting of Solid Surfaces: Fundamentals and Charge Effects
,”
Adv. Colloid Interface Sci.
,
179
, pp.
29
42
. 10.1016/j.cis.2012.06.009
20.
Wen
,
D. S.
, and
Wang
,
B. X.
,
2002
, “
Effects of Surface Wettability on Nucleate Pool Boiling Heat Transfer for Surfactant Solutions
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1739
1747
. 10.1016/S0017-9310(01)00251-4
21.
Wasekar
,
V. M.
,
2009
, “
Heat Transfer in Nucleate Pool Boiling of Aqueous SDS and Triton X-100 Solutions
,”
Heat Mass Transfer. und Stoffuebertragung
,
45
(
11
), pp.
1409
1414
. 10.1007/s00231-009-0517-6
22.
Kumar
,
M. K.
, and
Ghosh
,
P.
,
2006
, “
Coalescence of Air Bubbles in Aqueous Solutions of Ionic Surfactants in Presence of Inorganic Salt
,”
Chem. Eng. Res. Des.
,
84
(
8 A
), pp.
703
710
. 10.1205/cherd05058
23.
Suryanarayana
,
G.
, and
Ghosh
,
P.
,
2010
, “
Adsorption and Coalescence in Mixed-Surfactant Systems: Air-Water Interface
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1711
1724
.
24.
Bhatt
,
N. H.
,
Chouhan
,
D.
,
Pati
,
A. R.
,
Varshney
,
P.
,
Das
,
L.
,
Kumar
,
A.
,
Munshi
,
B.
,
Behera
,
A.
, and
Mohapatra
,
S. S.
,
2016
, “
Role of Water Temperature in Case of High Mass Flux Spray Cooling of a Hot AISI 304 Steel Plate at Different Initial Surface Temperatures
,”
Exp. Heat Transfer
,
30
(
5
), pp.
369
392
.
25.
Modak
,
M.
,
Srinivasan
,
S.
,
Garg
,
K.
,
Chougule
,
S. S.
,
Agarwal
,
M. K.
, and
Sahu
,
S. K.
,
2015
, “
Experimental Investigation of Heat Transfer Characteristics of the Hot Surface Using Al2O3-Water Nanofluids
,”
Chem. Eng. Process. Process Intensif.
,
91
(
8
), pp.
104
113
.
26.
Lily
,
Pati
,
A. R.
,
Panda
,
A.
,
Munshi
,
B.
,
Mohapatra
,
S. S.
,
Behera
,
A.
, and
Saha
,
B.
,
2019
, “
High Mass Flux Spray Quenching on an Inclined Surface: A Novel Methodology for the Attainment of Enhanced Uniform Cooling With Unaltered Surface Morphology in Transition Boiling Regime
,”
Int. J. Heat Mass Transfer
,
131
, pp.
11
30
. 10.1016/j.ijheatmasstransfer.2018.10.116
27.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Mohapatra
,
S. S.
,
Sinha
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Study of the Effect of Spray Inclination on Ultrafast Cooling of a Hot Steel Plate
,”
Heat Mass Transfer
,
49
(
10
), pp.
1509
1522
. 10.1007/s00231-013-1190-3
28.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
. 10.1016/j.ijheatfluidflow.2006.09.003
29.
Lee
,
P.
,
Choi
,
H.
, and
Lee
,
S.
,
2004
, “
The Effect of Nozzle Height on Cooling Heat Transfer From a Hot Steel Plate by an Impinging Liquid Jet
,”
ISIJ Int.
,
44
(
4
), pp.
704
709
. 10.2355/isijinternational.44.704
30.
Mohapatra
,
S. S.
,
Chakraborty
,
S.
, and
Pal
,
S. K.
,
2012
, “
Experimental Studies on Different Cooling Processes to Achieve Ultra-Fast Cooling Rate for Hot Steel Plate
,”
Exp. Heat Transfer
,
25
(
2
), pp.
111
126
. 10.1080/08916152.2011.582567
31.
Li
,
D. I.
, and
Wells
,
M. A.
,
2005
, “
Effect of Subsurface Thermocouple Installation on the Discrepancy of the Measured Thermal History and Predicted Surface Heat Flux During a Quench Operation
,”
Metall. Mater. Trans. B
,
36
(
3
), pp.
343
354
.
32.
Pati
,
A. R.
,
Bhatt
,
N. H.
,
Das
,
L.
,
Teja
,
S.
,
Nayak
,
S.
,
Kumar
,
A.
,
Sahoo
,
A.
,
Munshi
,
B.
,
Behera
,
A.
,
Sutar
,
H.
, and
Mohapatra
,
S. S.
,
2019
, “
The Discrepancy in the Prediction of Surface Temperatures by Inverse Heat Conduction Models for Different Quenching Processes From Very High Initial Surface Temperature
,”
Inverse Probl. Sci. Eng.
,
27
(
6
), pp.
808
835
. 10.1080/17415977.2018.1501369
33.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2003
,
INTEMP-Inverse Heat Transfer Analysis User’s Manual
,
Trucomp Co.
,
Fountain Val. Canada
, pp.
1
47
.
34.
Trujillo
,
D. M.
, and
Busby
,
H. R.
,
2017
,
Practical Inverse Analysis in Engineering (1997)
,
CRC Press
.
35.
Pati
,
A. R.
,
Kumar
,
A.
, and
Mohapatra
,
S. S.
,
2018
, “
Upward and Downward Facing High Mass Flux Spray Cooling With Additives: A Novel Technique to Enhance the Heat Removal Rate at High Initial Surface Temperature
,”
Heat Mass Transfer
,
54
(
6
), pp.
1669
1680
. 10.1007/s00231-017-2258-2
36.
Bhatt
,
N. H.
,
Lily
,
Raj
,
R.
,
Varshney
,
P.
,
Pati
,
A. R.
,
Chouhan
,
D.
,
Kumar
,
A.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Transfer Rate of High Mass Flux Spray Cooling by Ethanol-Water and Ethanol-Tween20-Water Solution at Very High Initial Surface Temperature
,”
Int. J. Heat Mass Transfer
,
110
, pp.
330
347
. 10.1016/j.ijheatmasstransfer.2017.02.094
37.
Ravikumar
,
S. V.
,
Jha
,
J. M.
,
Mohapatra
,
S. S.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2014
, “
Experimental Investigation of Effect of Different Types of Surfactants and Jet Height on Cooling of a Hot Steel Plate
,”
ASME J. Heat Transfer
,
136
(
7
), p.
072102
. 10.1115/1.4027182
38.
Panda
,
A.
,
Mohapatra
,
S. S.
, and
Kumar
,
A.
,
2019
, “
Polyethylene-Glycol-Added Water-Droplet Evaporative Cooling for Fast Cooling Operations
,”
J. Thermophys. Heat Transfer
,
33
(
3
), pp.
686
697
. 10.2514/1.T5601
39.
Mohapatra
,
S. S.
,
Ravikumar
,
S. V.
,
Verma
,
A.
,
Pal
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Experimental Investigation of Effect of a Surfactant to Increase Cooling of Hot Steel Plates by a Water Jet
,”
ASME J. Heat Transfer
,
135
(
3
), pp.
1
8
. 10.1115/1.4007878
40.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
. 10.1016/0017-9310(66)90138-4
41.
Pati
,
A. R.
,
Lily
,
Behera
,
A. P.
,
Munshi
,
B.
, and
Mohapatra
,
S. S.
,
2017
, “
Enhancement of Heat Removal Rate of High Mass Flux Spray Cooling by Sea Water
,”
Exp. Therm. Fluid Sci.
,
89
, pp.
19
40
. 10.1016/j.expthermflusci.2017.07.012
42.
Bergman
,
T. L.
,
Incropera
,
F. P.
,
DeWitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
43.
Labergue
,
A.
,
Gradeck
,
M.
, and
Lemoine
,
F.
,
2016
, “
Experimental Investigation of Spray Impingement Hydrodynamic on a Hot Surface at High Flow Rates Using Phase Doppler Analysis and Infrared Thermography
,”
Int. J. Heat Mass Transfer
,
100
, pp.
65
78
. 10.1016/j.ijheatmasstransfer.2016.01.041
44.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1983
, “
ASME Measurement Uncertainty
,”
Am. Soc. Mech. Eng.
,
107
(
83
), pp.
161
164
.
45.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
. 10.1016/0894-1777(88)90043-X
You do not currently have access to this content.