Abstract

The performance of the heat sink has been investigated as using rods through its fins. The shear-stress transport k–ω model is selected to carry out this study. Two different flow directions have been studied. Four cases are represented, including the baseline case which has no rods through the fins. Two, four, and six rods are used through the fins. Thermal resistance, pumping power, and Nusselt number have been represented and discussed through this study. The results show that as the number of rods increases, the thermal resistance decreases while the required pumping power increases. The impinging flow direction shows higher performance as compared with the suction flow direction. As the Reynolds number increases, the Nusselt number increases for all studied cases. The optimum case along with the studied range of Reynolds number and number of rods is case-2 (has four rods through fins).

References

1.
Khattak
,
Z.
, and
Ali
,
H. M.
,
2019
, “
Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review
,”
Int. J. Heat Mass Transfer
,
130
, pp.
141
161
. 10.1016/j.ijheatmasstransfer.2018.08.048
2.
Kim
,
D. K.
,
Kim
,
S. J.
, and
Bae
,
J. K.
,
2009
, “
Comparison of Thermal Performances of Plate-Fin and Pin-Fin Heat Sinks Subject to an Impinging Flow
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3510
3517
. 10.1016/j.ijheatmasstransfer.2009.02.041
3.
Biber
,
C. R.
,
1997
, “
Pressure Drop and Heat Transfer in an Isothermal Channel With Impinging Flow
,”
IEEE Trans. Compon. Packag. Manuf. Technol. A
,
20
, pp.
458
462
. 10.1109/95.650935
4.
Kondo
,
Y.
,
Behnia
,
M.
,
Nakayama
,
W.
, and
Matsushima
,
H.
,
1998
, “
Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages
,”
J. Electron. Packag.
,
120
(
3
), pp.
259
266
. 10.1115/1.2792631
5.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2006
, “
Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks
,”
J. Electron. Packag.
,
128
(
4
), pp.
412
418
. 10.1115/1.2351906
6.
Sathe
,
S.
,
Kelkar
,
K. M.
,
Karki
,
K. C.
,
Tai
,
C.
,
Lamb
,
C.
, and
Patankar
,
S. V.
,
1997
, “
Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink
,”
J. Electron. Packag.
,
119
(
1
), pp.
58
63
. 10.1115/1.2792201
7.
Ledezma
,
G.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing Between Pin Fins With Impinging Flow
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
570
577
. 10.1115/1.2822670
8.
Kondo
,
Y.
,
Matsushima
,
H.
, and
Komatsu
,
T.
,
2000
, “
Optimization of Pin Fin Heat Sinks for Impingement Cooling of Electronic Packages
,”
J. Electron. Packag.
,
122
(
3
), pp.
240
246
. 10.1115/1.1289761
9.
Issa
,
J. S.
, and
Ortega
,
A.
,
2006
, “
Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins
,”
J. Electron. Packag.
,
128
(
1
), pp.
61
70
. 10.1115/1.2160513
10.
Choudhary
,
V.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2019
, “
Experimental Investigation of Enhanced Performance of Pin Fin Heat Sink With Wings
,”
Appl. Therm. Eng.
,
155
, pp.
546
562
. 10.1016/j.applthermaleng.2019.03.139
11.
Bar-Cohen
,
A.
,
1996
, “
Thermal Management of Electric Components With Dielectric Liquids
,”
Proceedings of ASME/JSME Thermal Engineering Joint Conference
,
Maui, HI
,
J. R.
Lloyd
and
Y.
Kurosaki
, eds., vol.
2
, pp.
15
39
.
12.
Kondo
,
Y.
,
Matsushima
,
H.
, and
Ohashi
,
S.
,
1999
, “
Optimization of Heat Sink Geometries for Impingement Air-Cooling of LSI Packages
,”
Heat Transfer Asian Res.
,
28
, pp.
138
151
. 10.1002/(sici)1523-1496(1999)28:2<138::AID-HTJ7>3.0.CO;2-3
13.
Li
,
H.-Y.
,
Chao
,
S.-M.
, and
Tsai
,
G.-L.
,
2005
, “
Thermal Performance Measurement of Heat Sinks With Confined Jet by Infrared Thermography
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5386
5394
. 10.1016/j.ijheatmasstransfer.2005.07.007
14.
Kim
,
S. J.
,
Kim
,
D.-K.
, and
Oh
,
H. H.
,
2008
, “
Comparison of Fluid Flow and Thermal Characteristics of Plate-Fin and Pin-Fin Heat Sinks Subject to a Parallel Flow
,”
Heat Transfer Eng.
,
29
(
2
), pp.
169
177
. 10.1080/01457630701686669
15.
Wong
,
K. C.
, and
Indran
,
S.
,
2013
, “
Impingement Heat Transfer of a Plate Fin Heat Sink With Fillet Profile
,”
Int. J. Heat Mass Transfer
,
65
, pp.
1
9
. 10.1016/j.ijheatmasstransfer.2013.05.059
16.
Hussain
,
A. A.
,
Freegah
,
B.
,
Khalaf
,
B. S.
, and
Towsyfyan
,
H.
,
2019
, “
Numerical Investigation of Heat Transfer Enhancement in Plate-Fin Heat Sinks: Effect of Flow Direction and Fillet Profile
,”
Case Stud. Therm. Eng.
,
13
, p.
100388
. 10.1016/j.csite.2018.100388
17.
Jeon
,
D.
, and
Byon
,
C.
,
2017
, “
Thermal Performance of Plate Fin Heat Sinks With Dual-Height Fins Subject to Natural Convection
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1086
1092
. 10.1016/j.ijheatmasstransfer.2017.06.031
18.
Saravanakumar
,
T.
, and
Kumar
,
D. S.
,
2019
, “
Performance Analysis on Heat Transfer Characteristics of Heat SINK With Baffles Attachment
,”
Int. J. Therm. Sci.
,
142
, pp.
14
19
. 10.1016/j.ijthermalsci.2019.04.002
19.
Shaeri
,
M. R.
, and
Bonner
,
R.
,
2017
, “
Heat Transfer and Pressure Drop in Laterally Perforated-Finned Heat Sinks Across Different Flow Regimes
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
220
227
. 10.1016/j.icheatmasstransfer.2017.07.022
20.
Li
,
B.
,
Jeon
,
S.
, and
Byon
,
C.
,
2016
, “
Investigation of Natural Convection Heat Transfer Around a Radial Heat Sink With a Perforated Ring
,”
Int. J. Heat Mass Transfer
,
97
, pp.
705
711
. 10.1016/j.ijheatmasstransfer.2016.02.058
21.
Ozsipahia
,
M.
,
Subasia
,
A.
,
Gunesa
,
H.
, and
Sahin
,
B.
,
2018
, “
Numerical Investigation of Hydraulic and Thermal Performance of a Honeycomb Heat Sink
,”
Int. J. Therm. Sci.
,
134
, pp.
500
506
. 10.1016/j.ijthermalsci.2018.07.034
22.
Awasarmol
,
U. V.
, and
Pise
,
A. T.
,
2015
, “
An Experimental Investigation of Natural Convection Heat Transfer Enhancement From Perforated Rectangular Fins Array at Different Inclinations
,”
Exp. Therm. Fluid. Sci.
,
68
, pp.
145
154
. 10.1016/j.expthermflusci.2015.04.008
23.
Alessa
,
A. H.
,
Maqableh
,
A. M.
, and
Ammourah
,
S.
,
2009
, “
Enhancement of Natural Convection Heat Transfer From a Fin by Rectangular Perforations With Aspect Ratio of Two
,”
Int. J. Phys. Sci.
,
4
, pp.
540
547
.
24.
Huang
,
G. J.
,
Wong
,
S. C.
, and
Lin
,
C. P.
,
2014
, “
Enhancement of Natural Convection Heat Transfer From Horizontal Rectangular Fin Arrays With Perforations in Fin Base
,”
Int. J. Therm. Sci.
,
84
, pp.
164
174
. 10.1016/j.ijthermalsci.2014.05.017
25.
Yoon
,
Y.
,
Park
,
S. J.
,
Kim
,
D. R.
, and
Lee
,
K.-S.
,
2018
, “
Thermal Performance Improvement Based on the Partial Heating Position of a Heat Sink
,”
Int. J. Heat Mass Transfer
,
124
, pp.
752
760
. 10.1016/j.ijheatmasstransfer.2018.03.080
You do not currently have access to this content.