Abstract

Two different kinds of composite phase change materials (PCMs)—a high thermal conductive 80 wt% paraffin wax (PW)/expanded graphite (EG) composite and a 75 wt% PW/silica aerogel (SA) with a low thermal conductivity—are prepared and they characterized the thermophysical parameters. Then, a numerical model of battery pack based on composite phase change materials coupled with polyimide (PI) electric heating films is established at −20 °C. The temperature of monitoring points set in model and maximum and minimum temperature of the batteries in the pack are measured during discharge at 1C and 2C. By comparing the battery pack filled with PW/EG composite and the pack consisting of PW/SA composite, we intend to choose an appropriate one of the two composite PCMs to improve the lithium-ion batteries performance at low temperature. The results indicate that in spite of a good heating performance in heating process, the PW/SA composite induces an even higher temperature difference over the battery pack. Although PW/EG composite causes a large temperature difference at the end of heating film heating, it can quickly restore the uniformity of the battery pack. The PW/EG composite plays a more important role in improving the performance of the lithium-ion batteries at low temperature.

References

1.
Rao
,
Z. H.
, and
Wang
,
S. F.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
. 10.1016/j.rser.2011.07.096
2.
Khateeb
,
S. A.
,
Farid
,
M. M.
,
Robert Selman
,
F. J.
, and
Al-Hallaj
,
S.
,
2004
, “
Design and Simulation of a Lithium-Ion Battery With a Phase Change Material Thermal Management System for an Electric Scooter
,”
J. Power Sources
,
128
(
2
), pp.
297
307
. 10.1016/j.jpowsour.2003.09.070
3.
Bai
,
F. F.
,
Chen
,
M. B.
,
Song
,
W. J.
,
Feng
,
Z. P.
,
Li
,
Y. L.
, and
Ding
,
Y. L.
,
2017
, “
Thermal Management Performances of PCM/Water Cooling-Plate Using for Lithium-Ion Battery Module Based on Non-Uniform Internal Heat Source
,”
Appl. Therm. Eng.
,
126
, pp.
17
27
. 10.1016/j.applthermaleng.2017.07.141
4.
Bandhauer
,
T. M.
,
Garimella
,
S.
, and
Fuller
,
T. F.
,
2011
, “
A Critical Review of Thermal Issues in Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
158
(
3
), pp.
R1
R25
. 10.1149/1.3515880
5.
Zhang
,
X. W.
,
Kong
,
X.
,
Li
,
G. J.
, and
Li
,
J.
,
2014
, “
Thermodynamic Assessment of Active Cooling/Heating Methods for Lithium-Ion Batteries of Electric Vehicles in Extreme Conditions
,”
Energy
,
64
, pp.
1092
1101
. 10.1016/j.energy.2013.10.088
6.
Ling
,
Z. Y.
,
Wen
,
X. Y.
,
Zhang
,
Z. G.
,
Fang
,
X. M.
, and
Xu
,
T.
,
2016
, “
Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures
,”
Energy Technol.
,
4
(
9
), pp.
1071
1076
. 10.1002/ente.201600083
7.
Liu
,
B. X.
,
Li
,
B.
, and
Guan
,
S. Y.
, “
Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries
,”
Electrochem. Solid-State Lett.
,
15
(
6
), pp.
A77
A79
. 10.1149/2.027206esl
8.
Smart
,
M. C.
,
Ratnakumar
,
B. V.
,
Chin
,
K. B.
, and
Whitcanack
,
L. D.
,
2010
, “
Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance
,”
J. Electrochem. Soc.
,
157
(
12
), pp.
A1361
A1374
. 10.1149/1.3501236
9.
Ji
,
Y.
,
Zhang
,
Y. C.
, and
Wang
,
C. Y.
, “
Li-Ion Cell Operation at Low Temperatures
,”
J. Electrochem. Soc.
,
160
(
4
), pp.
A636
A649
. 10.1149/2.047304jes
10.
Yao
,
B.
,
Ding
,
Z. J.
,
Zhang
,
J. X.
,
Feng
,
X. Y.
, and
Yin
,
L. W.
,
2014
, “
Encapsulation of LiFePO4 by In-Situ Graphitized Carbon Cage Towards Enhanced Low Temperature Performance as Cathode Materials for Lithium-Ion Batteries
,”
J. Solid State Chem.
,
216
, pp.
9
12
. 10.1016/j.jssc.2014.04.023
11.
Wang
,
C. Y.
,
Zhang
,
G. S.
,
Ge
,
S. H.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X. G.
, and
Leng
,
G. J.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
. 10.1038/nature16502
12.
Ji
,
Y.
, and
Wang
,
C. Y.
,
2013
, “
Heating Strategies for Li-Ion Batteries Operated From Subzero Temperatures
,”
Electrochim. Acta
,
107
, pp.
664
674
. 10.1016/j.electacta.2013.03.147
13.
Stuart
,
T. A.
, and
Hande
,
A.
,
2004
, “
HEV Battery Heating Using AC Currents
,”
J. Power Sources
,
129
(
2
), pp.
368
378
. 10.1016/j.jpowsour.2003.10.014
14.
Zhu
,
J. G.
,
Sun
,
Z. C.
,
Wei
,
X. Z.
, and
Dai
,
H. F.
,
2016
, “
An Alternating Current Heating Method for Lithium-Ion Batteries From Subzero Temperatures
,”
Int. J. Energy Res.
,
40
(
13
), pp.
1869
1883
. 10.1002/er.3576
15.
Al Hallaj
,
S.
, and
Selman
,
R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3231
3236
. 10.1149/1.1393888
16.
Jeon
,
D. H.
, and
Baek
,
S. M.
,
2011
, “
Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle
,”
Energy Convers. Manage.
,
52
(8–
9
), pp.
2973
2981
. 10.1016/j.enconman.2011.04.013
17.
Sato
,
N.
,
2001
, “
Thermal Behavior Analysis of Lithium-Ion Batteries for Electric and Hybrid Vehicles
,”
J. Power Sources
,
99
(
1–2
), pp.
70
77
. 10.1016/S0378-7753(01)00478-5
18.
Al Hallaj
,
S.
,
Prakash
,
J.
, and
Selman
,
J. R.
,
2000
, “
Characterization of Commercial Li-Ion Batteries Using Electrochemical–Calorimetric Measurements
,”
J. Power Sources
,
87
(
1–2
), pp.
186
194
. 10.1016/S0378-7753(99)00472-3
19.
Rao
,
Z. H.
,
Wang
,
S. F.
, and
Zhang
,
Y. L.
,
2012
, “
Simulation of Heat Dissipation With Phase Change Material for Cylindrical Power Battery
,”
J. Energy Inst.
,
85
(
1
), pp.
38
43
. 10.1179/1743967111Z.0000000008
You do not currently have access to this content.