Abstract

The motivation behind this article is to explore the impacts of heat transfer, magnetohydrodynamic, and hall current on two-dimensional incompressible nanofluid flow over a rotating disk. The nanofluid model utilized in the present investigation comprises the nanoparticle fraction model. Two sorts of nanoparticles to be specific Hematite (Fe2O3) is the principal source of iron and Cobalt alloy (Co64 Cr30 W6) is generally used metal alloy that is primarily Cobalt and Chromium with base fluid Motor Oil 10W30 is taken into consideration. The Prandtl number identifying with motor oil is (Pr = 1531.92). The governing equations are reduced to a system of ordinary differential equations by using Von-Karman transformation and then solved numerically utilizing matlab bvp4c. Impacts of the magnetic field, hall current, and nanoparticle volume fraction on tangential, radial velocities, and temperature profiles have been examined. Numerical outcomes have been acquired for various physical parameters through graphical representation. We have demonstrated that a remarkable reconciliation exists among the current outcomes and those in the literature for various values of magnetic parameter and velocity slip parameters, in the absence of other parameters. It is also found that radial and tangential velocities increase more in the case of Fe2O3 nanoparticles when compared with Co64 Cr30 W6 because of density variations. It is discovered that enhancement in a nanoparticle volume fraction reduces the heat transfer rate. It can moreover be clarified such a way that as the nanoparticle volume fraction raise, the density of nanoparticles increases, temperature also increases subsequently heat transfer rate decreases. This result keeps more cooling for the hard disk drives and might be intrigued for engineers.

References

1.
Herrero
,
J.
,
Humphrey
,
J. A. C.
, and
Giralt
,
F.
,
1994
, “
Comparative Analysis of Coupled Flow and Heat Transfer Between Corotating Discs in Rotating and Fixed Cylindrical Enclosures
,”
ASME J. Heat Transfer
,
300
, pp.
111
121
.
2.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating Disc Systems, Rotor–Stator System
,
Research Studies Press
,
Taunton, UK
, Vol.
1
, p.
301
.
3.
Karman
,
T. V.
,
1921
, “
Uber Laminare und Turbulente Reibung
,”
Z. Angew. Math. Mech.
,
1
(
4
), pp.
233
252
. 10.1002/zamm.19210010401
4.
Andrews
,
J.
, and
Anjali Devi
,
S. P.
,
2012
, “
Nanofluid Flow Over a Rotating Disk With Prescribed Heat Flux
,”
Mapana J. Sci.
,
11
(
3
), pp.
77
92
. 10.12723/mjs.22.4
5.
Ram
,
P.
, and
Sharma
,
K.
,
2014
, “
Effect of Rotation and MFD Viscosity on Ferrofluid Flow With Rotating Disk
,”
Indian J. Pure Appl. Phys.
,
52
(
2
), pp.
87
92
.
6.
Bhandari
,
A.
, and
Kumar
,
V.
,
2015
, “
Effect of Magnetization Force on Ferrofluid Flow Due to a Rotating Disk in the Presence of an External Magnetic Field
,”
Eur. Phys. J. Plus
,
130
(
4
), p.
62
. 10.1140/epjp/i2015-15062-0
7.
Mustafa
,
M.
,
2017
, “
MHD Nanofluid Flow Over a Rotating Disk With Partial Slip Effects: Buongiorno Model
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1910
1916
. 10.1016/j.ijheatmasstransfer.2017.01.064
8.
Imtiaz
,
M.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Asghar
,
S.
,
2017
, “
Slip Flow by a Variable Thickness Rotating Disk Subject to Magnetohydrodynamics
,”
Results Phys.
,
7
, pp.
503
509
. 10.1016/j.rinp.2016.12.021
9.
Turkyilmazoglu
,
M.
,
2014
, “
Nanofluid Flow and Heat Transfer Due to a Rotating Disk
,”
Comput. Fluids
,
94
(
1
), pp.
139
146
. 10.1016/j.compfluid.2014.02.009
10.
Sheikholeslami
,
M.
,
Hatami
,
M.
, and
Ganji
,
D. D.
,
2015
, “
Numerical Investigation of Nanofluid Spraying on an Inclined Rotating Disk for Cooling Process
,”
J. Mol. Liq.
,
211
, pp.
577
583
. 10.1016/j.molliq.2015.07.006
11.
Bachok
,
N.
,
Ishak
,
A.
, and
Pop
,
I.
,
2011
, “
Flow and Heat Transfer Over a Rotating Porous Disk in a Nanofluid
,”
Phys. B
,
406
(
9
), pp.
1767
1772
. 10.1016/j.physb.2011.02.024
12.
Chamkha
,
A. J.
, and
Rashad
,
A. M.
,
2014
, “
MHD Forced Convection Flow of a Nanofluid Adjacent to a non-Isothermal Wedge
,”
Comput Therm. Sci.
,
6
(
1
), pp.
27
39
. 10.1615/ComputThermalScien.2014005800
13.
Ganesh Kumar
,
K.
,
Ramesh
,
G. K.
,
Gireesha
,
B. J.
, and
Rashad
,
A. M.
,
2019
, “
On Stretched Magnetic Flow of Carreau Nanofluid with Slip Effects and Nonlinear Thermal Radiation
,”
Nonlinear Eng.
,
8
(
1
), pp.
340
349
. 10.1515/nleng-2017-0120
14.
EL-Kabeir
,
S. M. M.
,
EL-Zahar
,
E. R.
,
Modather
,
M.
,
Gorla
,
R. S. R.
, and
Rashad
,
A. M.
,
2019
, “
Unsteady MHD Slip Flow of a Ferrofluid Over an Impulsively Stretched Vertical Surface
,”
AIP Adv.
,
9
(
4
), p.
045112
. 10.1063/1.5088610
15.
EL-Zahar
,
E. R.
,
Rashad
,
A. M.
, and
Seddek
,
L. F.
,
2019
, “
The Impact of Sinusoidal Surface Temperature on the Natural Convective Flow of a Ferrofluid Along a Vertical Plate
,”
Mathematics
,
7
(
11
), p.
1014
. (1–12). 10.3390/math7111014
16.
Aboul-Hassan
,
A. L.
, and
Attia
,
H. A.
,
1997
, “
Flow due to a Rotating Disk with Hall Effect
,”
Phys. Lett. A
,
228
(
4–5
), pp.
286
290
. 10.1016/S0375-9601(97)00086-8
17.
Sibanda
,
P.
, and
Makinde
,
O. D.
,
2010
, “
On Steady MHD Flow and Heat Transfer Past a Rotating Disk in a Porous Medium with Ohmic Heating and Viscous Dissipation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
20
(
3
), pp.
269
285
. 10.1108/09615531011024039
18.
Frusteri
,
F.
, and
Osalusi
,
E.
,
2007
, “
On MHD and Slip Flow Over a Rotating Porous Disk with Variable Properties
,”
Int. Commun. Heat Mass Transfer
,
34
(
4
), pp.
492
501
. 10.1016/j.icheatmasstransfer.2007.01.004
19.
Das
,
S.
,
Tarafdar
,
B.
,
Jana
,
R. N.
, and
Makinde
,
O. D.
,
2019
, “
Magnetic Ferro-Nanofluid Flow in a Rotating Channel Containing Darcian Porous Medium Considering Induced Magnetic Field and Hall Currents
,”
Spec. Top. Rev. Porous Media
,
10
(
4
), pp.
357
383
. 10.1615/SpecialTopicsRevPorousMedia.2019028377
20.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
581
. 10.1063/1.1700493
21.
Maxwell Garnett
,
J. C.
,
1904
, “
Colours in Metal Glasses and in Metallic Films
,”
Philos. Trans. R. Soc. Lond. A
,
203
(
359–371
), pp.
385
420
. 10.1098/rsta.1904.0024
22.
Guerin
,
C. A.
,
Mallet
,
P.
, and
Sentenac
,
A.
,
2006
, “
Effective-medium Theory for Finite-Size Aggregates
,”
J. Opt. Soc. Am. A
,
23
(
2
), pp.
349
358
. 10.1364/JOSAA.23.000349
23.
Behrens
,
T.
,
Terschuren
,
C.
,
Kaune
,
W. T.
, and
Hoffmann
,
W.
,
2004
, “
Quantification of Lifetime Accumulated ELF-EMF Exposure From Household Appliances in the Context of a Retrospective Epidemiological Case–Control Study
,”
J. Expo. Anal. Environ. Epidemiol
,
14
(
2
), pp.
144
153
. 10.1038/sj.jea.7500305
24.
Preece
,
A. W.
,
Kaune
,
W. T.
,
Grainger
,
P.
, and
Golding
,
J.
,
1999
, “
Assessment of Human Exposure to Magnetic Fields Produced by Domestic Appliances
,”
Radiat. Prot. Dosim.
,
83
(
1–2
), pp.
21
27
. 10.1093/oxfordjournals.rpd.a032659
25.
Attia
,
H. A.
, and
Aboul-Hassan
,
A. L.
,
2001
, “
Effect of Hall Current on the Unsteady MHD Flow Due to a Rotating Disk With Uniform Suction or Injection
,”
Appl. Math. Modell.
,
25
(
12
), pp.
1089
1098
. 10.1016/S0307-904X(01)00033-6
You do not currently have access to this content.