Abstract

The thermal and capillary performance of a groove-enhanced, or “microchannel-embedded,” flat-plate oscillating heat pipe (MC FP-OHP) was experimentally investigated while varying heating width, orientation, working fluid and operating temperature. The copper MC FP-OHP possessed two layers of 1.02 × 1.02 mm2 square channels, with the center 14 channels possessing two embedded microchannels (0.25 × 0.13 mm2) aligned coaxially with the primary minichannels. A FP-OHP without embedded microchannels, but with deeper minichannels (DC FP-OHP), was also tested for comparison. The FP-OHPs were filled with Novec 7200 or water (both at 80% ± 2% by volume), and the heating widths were varied between full-width and localized configurations: 38.71 cm2 and 14.52 cm2, respectively. Experimental results demonstrate that the MC FP-OHP is significantly less sensitive to operating orientation and can perform with less detriment as heat flux increases. The MC FP-OHP has a lower startup heating requirement and provides more fluid wetting along the FP-OHP structure—which is advantageous for pumping liquid from the evaporator to the condenser. The MC FP-OHP has enhanced convective heat transfer during operation, as it was observed to have similar or lower thermal resistances to that of the DC FP-OHP for a wide range of operating conditions. The groove-enhanced minichannel within the MC FP-OHP also provides for enhanced heat transfer because there being more thin-film evaporation sites and vapor–liquid mixing between the minichannel and microchannels.

References

1.
Thompson
,
S. M.
, and
Ma
,
H. B.
,
2015
, “
Recent Advances in Two-Phase Thermal Ground Planes
,”
Annu. Rev. Heat Transfer
,
18
, pp.
101
153
. 10.1615/AnnualRevHeatTransfer.2015011163
2.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
. 10.1016/j.expthermflusci.2011.04.014
3.
Ebrahimi
,
M.
,
Shafii
,
M. B.
, and
Bijarchi
,
M. A.
,
2015
, “
Experimental Investigation of the Thermal Management of Flat-Plate Closed-Loop Pulsating Heat Pipes With Interconnecting Channels
,”
Appl. Therm. Eng.
,
90
, pp.
838
847
. 10.1016/j.applthermaleng.2015.07.040
4.
Pastukhov
,
V. G.
, and
Maydanik
,
Y. F.
,
2016
, “
Development of a Pulsating Heat Pipe With a Directional Circulation of a Working Fluid
,”
Appl. Therm. Eng.
,
109
(
A
), pp.
155
161
. 10.1016/j.applthermaleng.2016.08.076
5.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2015
, “
International Journal of Heat and Mass Transfer Experimental Investigation on the Thermal Performance of a Micro Pulsating Heat Pipe With a Dual-Diameter Channel
,”
Int. J. Heat Mass Transfer
,
89
, pp.
817
828
. 10.1016/j.ijheatmasstransfer.2015.05.091
6.
Chien
,
K. H.
,
Lin
,
Y. T.
,
Chen
,
Y. R.
,
Yang
,
K. S.
, and
Wang
,
C. C.
,
2012
, “
A Novel Design of Pulsating Heat Pipe With Fewer Turns Applicable to All Orientations
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5722
5728
. 10.1016/j.ijheatmasstransfer.2012.05.068
7.
Jang
,
D. S.
,
Lee
,
J. S.
,
Ahn
,
J. H.
,
Kim
,
D.
, and
Kim
,
Y.
,
2017
, “
Flow Patterns and Heat Transfer Characteristics of Flat Plate Pulsating Heat Pipes With Various Asymmetric and Aspect Ratios of the Channels
,”
Appl. Therm. Eng.
,
114
, pp.
211
220
. 10.1016/j.applthermaleng.2016.11.189
8.
Xu
,
J.
,
Zhang
,
Y.
, and
Ma
,
H.
,
2009
, “
Effect of Internal Wick Structure on Liquid-Vapor Oscillatory Flow and Heat Transfer in an Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
131
(
12
), p.
121012
. 10.1115/1.3222736
9.
Smoot
,
C. D.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of Hybrid Oscillating Heat Pipe
,”
Front. Heat Pipes
,
2
(
2
), pp.
1
6
. 10.5098/fhp.v2.2.3001
10.
Qu
,
J.
,
Li
,
X.
,
Wang
,
Q.
,
Liu
,
F.
, and
Guo
,
H.
,
2017
, “
Heat Transfer Characteristics of Micro-Grooved Oscillating Heat Pipes
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
75
84
. 10.1016/j.expthermflusci.2017.02.022
11.
Stephan
,
P.
, and
Brandt
,
C.
,
2004
, “
Advanced Capillary Structures for High Performance Heat Pipes
,”
Heat Transf. Eng.
,
25
(
3
), pp.
78
85
. 10.1080/01457630490280407
12.
Conder
,
T. E.
, and
Solovitz
,
S. A.
,
2011
, “
Computational Optimization of a Groove-Enhanced Minichannel
,”
Heat Transf. Eng.
,
32
(
10
), pp.
876
890
. 10.1080/01457632.2011.548632
13.
Kelly
,
B.
,
Hayashi
,
Y.
, and
Kim
,
Y.-J.
,
2018
, “
Novel Radial Pulsating Heat-Pipe for High Heat-Flux Thermal Spreading
,”
Int. J. Heat Mass Transfer
,
121
, pp.
97
106
. 10.1016/j.ijheatmasstransfer.2017.12.107
14.
Kim
,
W.
, and
Kim
,
S.-J.
,
2018
, “
Effect of Reentrant Cavities on the Thermal Performance of a Pulsating Heat Pipe
,”
Appl. Therm. Eng.
,
133
, pp.
61
69
. 10.1016/j.applthermaleng.2018.01.027
15.
Wang
,
H.
,
Qu
,
J.
,
Peng
,
Y.
, and
Sun
,
Q.
,
2019
, “
Heat Transfer Performance of a Novel Tubular Oscillating Heat Pipe With Sintered Copper Particles Inside Flat-Plate Evaporator and High-Power LED Heat Sink Application
,”
Energy Convers. Manag.
,
189
, pp.
215
222
. 10.1016/j.enconman.2019.03.093
16.
Fonseca
,
L. D.
,
Pfotenhauer
,
J.
, and
Miller
,
F.
,
2018
, “
Results of a Three Evaporator Cryogenic Helium Pulsating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
120
, pp.
1275
1286
. 10.1016/j.ijheatmasstransfer.2017.12.108
17.
Thompson
,
S. M.
,
Hathaway
,
A. A.
,
Smoot
,
C. D.
,
Wilson
,
C. A.
,
Ma
,
H. B.
,
Young
,
R. M.
,
Greenberg
,
L.
,
Osick
,
B. R.
,
Campen
,
S. V.
,
Morgan
,
B. C.
,
Sharar
,
D.
, and
Jankowski
,
N.
,
2011
, “
Robust Thermal Performance of a Flat-Plate Oscillating Heat Pipe During High-Gravity Loading
,”
ASME J. Heat Transfer
,
133
(
10
), p.
104504
. 10.1115/1.4004076
18.
Thompson
,
S. M.
,
Cheng
,
P.
, and
Ma
,
H. B.
,
2011
, “
An Experimental Investigation of a Three-Dimensional Flat-Plate Oscillating Heat Pipe With Staggered Microchannels
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3951
3959
. 10.1016/j.ijheatmasstransfer.2011.04.030
19.
Thompson
,
S. M.
,
Aspin
,
Z. S.
,
Shamsaei
,
N.
,
Elwany
,
A.
, and
Bian
,
L.
,
2015
, “
Additive Manufacturing of Heat Exchangers: A Case Study on a Multi-Layered Ti–6Al–4V Oscillating Heat Pipe
,”
Addit. Manuf.
,
8
, pp.
163
174
. 10.1016/j.addma.2015.09.003
20.
Kearney
,
D.
, and
Griffin
,
J.
,
2014
, “
An Open Loop Pulsating Heat Pipe for Integrated Electronic Cooling Applications
,”
ASME J. Heat Transfer
,
136
(
8
), p.
081401
. 10.1115/1.4027131
21.
Rausch
,
M. H.
,
Kretschmer
,
L.
,
Will
,
S.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
,
2015
, “
Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500
,”
J. Chem. Eng. Data
,
60
(
12
), pp.
3759
3765
. 10.1021/acs.jced.5b00691
22.
Fairley
,
J. D.
,
Thompson
,
S. M.
, and
Anderson
,
D.
,
2015
, “
Time–Frequency Analysis of Flat-Plate Oscillating Heat Pipes
,”
Int. J. Therm. Sci.
,
91
, pp.
113
124
. 10.1016/j.ijthermalsci.2015.01.001
23.
Liu
,
X.
,
Chen
,
Y.
, and
Shi
,
M.
,
2013
, “
Dynamic Performance Analysis on Start-Up of Closed-Loop Pulsating Heat Pipes (CLPHPs)
,”
Int. J. Therm. Sci.
,
65
, pp.
224
233
. 10.1016/j.ijthermalsci.2012.10.012
24.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unsolved Issues in Pulsating Heat Pipes
,”
Heat Transf. Eng.
,
29
(
1
), pp.
20
44
. 10.1080/01457630701677114
25.
Cheng
,
P.
,
Thompson
,
S.
,
Boswell
,
J.
, and
Ma
,
H. B.
,
2010
, “
An Investigation of Flat-Plate Oscillating Heat Pipes
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041009
. 10.1115/1.4002726
26.
Bico
,
J.
,
Thiele
,
U.
, and
Quéré
,
D.
,
2002
, “
Wetting of Textured Surfaces
,”
Colloids Surf., A
,
206
(
1–3
), pp.
41
46
. 10.1016/S0927-7757(02)00061-4
27.
Quéré
,
D.
,
2002
, “
Rough Ideas on Wetting
,”
Phys. A
,
313
(
1–2
), pp.
32
46
. 10.1016/S0378-4371(02)01033-6
28.
Friz
,
G.
,
1965
, “
Über Den Dynamischen Randwinkel Im Fall Der Vollständigen Benetzung
,”
Angew. Phys.
,
19
(
4
), pp.
374
378
.
29.
Keller
,
A. A.
,
Broje
,
V.
, and
Setty
,
K.
,
2007
, “
Effect of Advancing Velocity and Fluid Viscosity on the Dynamic Contact Angle of Petroleum Hydrocarbons
,”
J. Pet. Sci. Eng.
,
58
(
1–2
), pp.
201
206
. 10.1016/j.petrol.2006.12.002
30.
Li
,
X.
,
Fan
,
X.
,
Askounis
,
A.
,
Wu
,
K.
,
Sefiane
,
K.
, and
Koutsos
,
V.
,
2013
, “
An Experimental Study on Dynamic Pore Wettability
,”
Chem. Eng. Sci.
,
104
, pp.
988
997
. 10.1016/j.ces.2013.10.026
31.
Bian
,
X.
,
Schultz
,
W. W.
, and
Perling
,
M.
,
2003
,
Liquid Slug Motion and Contact Lines in an Oscillatory Capillary Tube
,
University of Michigan
,
Michigan, MI
.
32.
Huh
,
C.
, and
Mason
,
S. G.
,
1977
, “
The Steady Movement of a Liquid Meniscus in a Capillary Tube
,”
J. Fluid Mech.
,
81
(
3
), pp.
401
419
. 10.1017/S0022112077002134
33.
Cheng
,
P.
,
Dong
,
J.
,
Thompson
,
S. M.
, and
Ma
,
H. B.
,
2012
, “
Heat Transfer in the Bulk and Thin Film Fluid Regions of a Rectangular Micro Groove
,”
J. Thermophys. Heat Transfer
,
26
(
1
), pp.
108
114
. 10.2514/1.T3684
34.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
. 10.1115/1.1409265
You do not currently have access to this content.