Abstract

This paper reports the development of a two-dimensional two states (2D2S) model for the analysis of thermal behaviors of Li-ion battery packs and its experimental validation. This development was motivated by the need to fill a niche in our current modeling capabilities: the need to analyze 2D temperature (T) distributions in large-scale battery packs in real time. Past models were predominately developed to either provide detailed T information with high computational cost or provide real-time analysis but only 1D lumped T information. However, the capability to model 2D T field in real time is desirable in many applications ranging from the optimal design of cooling strategies to onboard monitoring and control. Therefore, this work developed a new approach to provide this desired capability. The key innovations in our new approach involved modeling the whole battery pack as a complete thermal-fluid network and at the same time calculating only two states (surface and core T) for each cell. Modeling the whole pack as a complete network captured the interactions between cells and enabled the accurate resolution of the 2D T distribution. Limiting the calculation to only the surface and core T controlled the computational cost at a manageable level and rendered the model suitable for packs at large scale with many cells.

References

1.
Shi
,
P.
, and
Zhao
,
Y.
,
2006
, “
Application of Unscented Kalman Filter in the SOC Estimation of Li-Ion Battery for Autonomous Mobile Robot
,”
2006 IEEE International Conference on Information Acquisition
,
Weihai, China
,
Aug. 20–23
, pp.
1279
1283
.
2.
Yang
,
Z.
,
Zhang
,
J.
,
Kintner-Meyer
,
M. C.
,
Lu
,
X.
,
Choi
,
D.
,
Lemmon
,
J. P.
, and
Liu
,
J.
,
2011
, “
Electrochemical Energy Storage for Green Grid
,”
Chem. Rev.
,
111
(
5
), pp.
3577
3613
.
3.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J.-M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
4.
Mesbahi
,
T.
,
Ouari
,
A.
,
Ghennam
,
T.
,
Berkouk
,
E. M.
,
Rizoug
,
N.
,
Mesbahi
,
N.
, and
Meradji
,
M.
,
2014
, “
A Stand-Alone Wind Power Supply With a Li-Ion Battery Energy Storage System
,”
Renew. Sust. Energy Rev.
,
40
, pp.
204
213
.
5.
Yeow
,
K.
,
Teng
,
H.
,
Thelliez
,
M.
, and
Tan
,
E.
,
2012
, “
3D Thermal Analysis of Li-Ion Battery Cells With Various Geometries and Cooling Conditions Using Abaqus
,”
Proceedings of the SIMULIA Community Conference
,
Providence, RI
,
May 15
.
6.
Wang
,
H.
,
Xu
,
W.
, and
Ma
,
L.
,
2016
, “
Actively Controlled Thermal Management of Prismatic Li-Ion Cells Under Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
102
, pp.
315
322
.
7.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.
8.
Pesaran
,
A.
,
Santhanagopalan
,
S.
, and
Kim
,
G.-H.
,
2013
, “
Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications
,”
30th International Battery Seminar
,
Ft. Lauderdale, FL
,
Mar. 11–14
.
9.
Shabani
,
B.
, and
Biju
,
M.
,
2015
, “
Theoretical Modelling Methods for Thermal Management of Batteries
,”
Energies
,
8
(
9
), pp.
10153
10177
.
10.
Mohany
,
S.
,
Kim
,
Y.
,
Stefanopoulou
,
A. G.
, and
Ding
,
Y.
,
2014
, “
On the Warmup of Li-Ion Cells From Sub-Zero Temperatures
,”
American Control Conference (ACC)
,
Portland, OR
,
June 4–6
, pp.
1547
1552
.
11.
Lin
,
X.
,
Perez
,
H. E.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Li
,
Y.
,
Anderson
,
R. D.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring
,”
IEEE Transactions on Control Systems Technology
,
21
(
5
), pp.
1745
1755
.
12.
Liu
,
H.
,
Wei
,
Z.
,
He
,
W.
, and
Zhao
,
J.
,
2017
, “
Thermal Issues About Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review
,”
Energy Convers. Manage.
,
150
, pp.
304
330
.
13.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renew. Sust. Energy Rev.
,
15
(
9
), pp.
4554
4571
.
14.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.
15.
Xia
,
G.
,
Cao
,
L.
, and
Bi
,
G.
,
2017
, “
A Review on Battery Thermal Management in Electric Vehicle Application
,”
J. Power Sources
,
367
, pp.
90
105
.
16.
Ma
,
L.
,
2016
, “
Nonintrusive and Multidimensional Optical Diagnostics and Their Applications in the Study of Thermal-Fluid Systems
,”
Heat Transfer Eng.
,
37
(
3-4
), pp.
359
368
.
17.
Dhatt
,
G.
,
Lefrançois
,
E.
, and
Touzot
,
G.
,
2012
,
Finite Element Method
,
John Wiley & Sons
,
New York
.
18.
Mi
,
C.
,
Li
,
B.
,
Buck
,
D.
, and
Ota
,
N.
,
2007
, “
Advanced Electro-Thermal Modeling of Lithium-Ion Battery System for Hybrid Electric Vehicle Applications
,”
Vehicle Power and Propulsion Conference
,
Arlington, TX
,
Sept. 9–12
, pp.
107
111
.
19.
Park
,
H.
,
2013
, “
A Design of Air Flow Configuration for Cooling Lithium ion Battery in Hybrid Electric Vehicles
,”
J. Power Sources
,
239
, pp.
30
36
.
20.
He
,
F.
,
Wang
,
H.
, and
Ma
,
L.
,
2015
, “
Experimental Demonstration of Active Thermal Control of a Battery Module Consisting of Multiple Li-ion Cells
,”
Int. J. Heat Mass Transfer
,
91
, pp.
630
639
.
21.
He
,
F.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Combined Experimental and Numerical Study of Thermal Management of Battery Module Consisting of Multiple Li-Ion Cells
,”
Int. J. Heat Mass Transfer
,
72
, pp.
622
629
.
22.
He
,
F.
, and
Ma
,
L.
,
2016
, “
Thermal Management in Hybrid Power Systems Using Cylindrical and Prismatic Battery Cells
,”
Heat Transfer Eng.
,
37
(
6
), pp.
581
590
.
23.
Anderson
,
J. D.
, and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
,
Springer
,
New York
.
24.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
London
.
25.
Bahiraei
,
F.
,
Fartaj
,
A.
, and
Nazri
,
G.-A.
,
2017
, “
Electrochemical-Thermal Modeling to Evaluate Active Thermal Management of a Lithium-Ion Battery Module
,”
Electrochim. Acta
,
254
, pp.
59
71
.
26.
Ye
,
Y.
,
Saw
,
L. H.
,
Shi
,
Y.
, and
Tay
,
A. A. O.
,
2015
, “
Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries During Fast Charging
,”
Appl. Therm. Eng.
,
86
, pp.
281
291
.
27.
Greco
,
A.
,
Cao
,
D.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
.
28.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2017
, “
Transient Electrochemical Heat Transfer Modeling and Experimental Validation of a Large Sized LiFePO4/Graphite Battery
,”
Int. J. Heat Mass Transfer
,
109
, pp.
1239
1251
.
29.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li-Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.
30.
Jilte
,
R. D.
,
Kumar
,
R.
, and
Ma
,
L.
,
2019
, “
Thermal Performance of a Novel Confined Flow Li-Ion Battery Module
,”
Appl. Therm. Eng.
,
146
, pp.
1
11
.
31.
Shahid
,
S.
, and
Agelin-Chaab
,
M.
,
2017
, “
Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries
,”
Energies
,
10
(
8
), pp.
1157
.
32.
Wang
,
H.
,
He
,
F.
, and
Ma
,
L.
,
2016
, “
Experimental and Modeling Study of Controller-Based Thermal Management of Battery Modules Under Dynamic Loads
,”
Int. J. Heat Mass Transfer
,
103
, pp.
154
164
.
33.
Youngki
,
K.
,
Mohan
,
S.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
, and
Yi
,
D.
,
2014
, “
The Estimation of Temperature Distribution in Cylindrical Battery Cells Under Unknown Cooling Conditions
,”
IEEE Transactions on Control System Technology
,
22
(
6
), pp.
2277
2286
.
34.
Lin
,
X.
,
Fu
,
H.
,
Perez
,
H. E.
,
Siege
,
J. B.
,
Stefanopoulou
,
A. G.
,
Ding
,
Y.
, and
Castanier
,
M. P.
,
2013
, “
Parameterization and Observability Analysis of Scalable Battery Clusters for Onboard Thermal Management
,”
Oil Gas Sci. Technol.—Rev. IFP Energies nouvelles
,
68
(
1
), pp.
165
178
.
35.
Damay
,
N.
,
Forgez
,
C.
,
Bichat
,
M. P.
,
Friedrich
,
G.
, and
Ospina
,
A.
,
2013
, “
Thermal Modeling and Experimental Validation of a Large Prismatic Li-Ion Battery
,”
IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society
,
Vienna, Austria
,
Nov. 10–13
, pp.
4694
4699
.
36.
Damay
,
N.
,
Forgez
,
C.
,
Bichat
,
M.-P.
, and
Friedrich
,
G.
,
2015
, “
Thermal Modeling of Large Prismatic LiFePO4/Graphite Battery Coupled Thermal and Heat Generation Models for Characterization and Simulation
,”
J. Power Sources
,
283
, pp.
37
45
.
37.
Forgez
,
C.
,
Vinh Do
,
D.
,
Friedrich
,
G.
,
Morcrette
,
M.
, and
Delacourt
,
C.
,
2010
, “
Thermal Modeling of a Cylindrical LiFePO4/Graphite Lithium-Ion Battery
,”
J. Power Sources
,
195
(
9
), pp.
2961
2968
.
38.
Park
,
C.
, and
Jaura
,
A. K.
,
2003
, “
Dynamic Thermal Model of Li-Ion Battery for Predictive Behavior in Hybrid and Fuel Cell Vehicles
,”
Future Transportation Technology Conference
,
Costa Mesa, CA
,
June 23–25
, SAE Technical Paper, 2003-01-2286.
39.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat Mass Transfer
,
83
, pp.
164
172
.
40.
Panchal
,
S.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
,
Fowler
,
M.
, and
Fraser
,
R.
,
2017
, “
Uneven Temperature and Voltage Distributions due to Rapid Discharge Rates and Different Boundary Conditions for Series-Connected LiFePO4 Batteries
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
210
217
.
41.
Ling
,
Z.
,
Wen
,
X.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Gao
,
X.
,
2018
, “
Thermal Management Performance of Phase Change Materials With Different Thermal Conductivities for Li-Ion Battery Packs Operated at Low Temperatures
,”
Energy
,
144
, pp.
977
983
.
42.
Wang
,
H.
, and
Ma
,
L.
,
2017
, “
Thermal Management of a Large Prismatic Battery Pack Based on Reciprocating Flow and Active Control
,”
Int. J. Heat Mass Transfer
,
115
(
Part A
), pp.
296
303
.
43.
Drake
,
S. J.
,
Wetz
,
D. A.
,
Ostanek
,
J. K.
,
Miller
,
S. P.
,
Heinzel
,
J. M.
, and
Jain
,
A.
,
2014
, “
Measurement of Anisotropic Thermophysical Properties of Cylindrical Li-Ion Cells
,”
J. Power Sources
,
252
, pp.
298
304
.
44.
Mills
,
A.
, and
Al-Hallaj
,
S.
,
2005
, “
Simulation of Passive Thermal Management System for Lithium-Ion Battery Packs
,”
J. Power Sources
,
141
(
2
), pp.
307
315
.
45.
Bandhauer
,
T. M.
,
2011
,
Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries
,
Georgia Institute of Technology
,
Atlanta, GA
.
46.
Pop
,
V.
,
2008
,
Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications
,
Springer Science & Business Media
,
Eindhoven, Netherlands
.
47.
Li
,
X.
,
He
,
F.
, and
Ma
,
L.
,
2013
, “
Thermal Management of Cylindrical Batteries Investigated Using Wind Tunnel Testing and Computational Fluid Dynamics Simulation
,”
J. Power Sources
,
238
, pp.
395
402
.
You do not currently have access to this content.