Abstract

Vortex generators (VG) are widely used in multifunctional heat exchangers/reactors for augmenting the heat transfer from fin plates to the working fluid. In this study, numerical simulations for longitudinal VGs are performed for both laminar and turbulent flow regimes. The shear-stress transport (SST) κω model is used for modeling turbulence. Inclination angle for a new streamlined VG configuration called inclined projected winglet pair (IPWP) was varied to study the effect of this angle on the heat transfer enhancement and pressure drop. Response surface methodology (RSM) was used to deduce the inclination angle effects on heat transfer, pressure drop, and vorticity from both local and global points of view. Such study highlights the optimization for this VG configuration for better heat transfer intensification, based on thermal enhancement factor (TEF). Finally, it is found that the VG with inclination angle ranging from 30 deg to 35 deg exhibits the best global performance compared to other inclination angles. This type of studies is important for the enhancement of the thermal performance of heat exchangers and static mixers in various engineering applications.

References

1.
Javaherdeh
,
K.
,
Vaisi
,
A.
,
Moosavi
,
R.
, and
Esmaeilpour
,
M.
,
2017
, “
Experimental and Numerical Investigations on Louvered Fin-and-Tube Heat Exchanger With Variable Geometrical Parameters
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
024501
.
2.
Shyam
,
S.
,
Datta
,
A.
, and
Kumar Das
,
A.
,
2017
, “
Numerical Analysis of Fluid Flow and Heat Transfer of Flow Between Parallel Plates Having Rectangular Shape Micromixer
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011003
.
3.
Ali
,
S.
,
Habchi
,
C.
,
Menanteau
,
S.
,
Lemenand
,
T.
, and
Harion
,
J. L.
,
2015
, “
Heat Transfer and Mixing Enhancement by Free Elastic Flaps Oscillation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
250
264
.
4.
Rahimi
,
M.
,
Shabanian
,
S. R.
, and
Alsairafi
,
A. A.
,
2009
, “
Experimental and CFD Studies on Heat Transfer and Friction Factor Characteristics of a Tube Equipped With Modified Twisted Tape Inserts
,”
Chem. Eng. Process.: Process Intensifi.
,
48
(
3
), pp.
762
770
.
5.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2009
, “
A Novel Split-Dimple Interrupted Fin Configuration for Heat Transfer Augmentation
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1561
1572
.
6.
Tala
,
J. V. S.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Harion
,
J.-L.
,
2013
, “
Numerical Analysis of the Fin Spacing Effect on the Horseshoe Vortex System Evolution in a Two-Rows Finned-Tube Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
7
), pp.
1136
1154
.
7.
Habchi
,
C.
, and
Harion
,
J.-L.
,
2014
, “
Residence Time Distribution and Heat Transfer in Circular Pipe Fitted With Longitudinal Rectangular Wings
,”
Int. J. Heat Mass Transfer
,
74
, pp.
13
24
.
8.
Zhu
,
C.
,
Liang
,
H.
,
Sun
,
D.
,
Wang
,
L.
, and
Zhang
,
Y.
,
2006
, “
Numerical Study of Interactions of Vortices Generated by Vortex Generators and Their Effects on Heat Transfer Enhancement
,”
Numer. Heat Transfer, Part A
,
50
(
4
), pp.
345
360
.
9.
Zhang
,
T.
,
Huang
,
Z. Q.
,
Zhang
,
X. B.
, and
Liu
,
C. J.
,
2016
, “
Numerical Investigation of Heat Transfer Using a Novel Punched Vortex Generator
,”
Numer. Heat Transfer, Part A
,
69
(
10
), pp.
1150
1168
.
10.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.
11.
Agarwal
,
S.
, and
Sharma
,
R. P.
,
2016
, “
Numerical Investigation of Heat Transfer Enhancement Using Hybrid Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031007
.
12.
Fiebig
,
M.
,
1995
, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
376
388
.
13.
Deshpande
,
S.
,
Ravi
,
B. V.
,
Pandit
,
J.
,
Ma
,
T.
,
Huxtable
,
S.
, and
Ekkad
,
S.
,
2018
, “
Effect of Longitudinal Vortex Generator Location on Thermoelectric-Hydraulic Performance of a Single-Stage Integrated Thermoelectric Power Generator
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
5
), p.
051016
.
14.
Anxionnaz
,
Z.
,
Cabassud
,
M.
,
Gourdon
,
C.
, and
Tochon
,
P.
,
2008
, “
Heat Exchanger/Reactors (HEX Reactors): Concepts, Technologies: State-of-the-Art
,”
Chem. Eng. Process.: Process Intensif.
,
47
(
12
), pp.
2029
2050
.
15.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
16.
Lei
,
Y.-G.
,
He
,
Y.-L.
,
Tian
,
L.-T.
,
Chu
,
P.
, and
Tao
,
W.-Q.
,
2010
, “
Hydrodynamics and Heattransfer Characteristics of a Novel Heat Exchanger With Delta-Winglet Vortex Generators
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1551
1562
.
17.
He
,
Y. L.
,
Han
,
H.
,
Tao
,
W. Q.
, and
Zhang
,
Y. W.
,
2012
, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5449
5458
.
18.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.
19.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2012
, “
Effect of Longitudinal Vortex Generator on Heat Transfer in Rectangular Channels
,”
Appl. Therm. Eng.
,
37
, pp.
67
72
.
20.
Tanaka
,
T.
,
Itoh
,
M.
,
Hatada
,
T.
, and
Matsushima
,
H.
,
2003
, “
Influence of Inclination Angle, Attack Angle, and Arrangement of Rectangular Vortex Generators on Heat Transfer Performance
,”
Heat Transfer-Asian Res.
,
32
(
3
), pp.
253
267
.
21.
Khan
,
T. A.
, and
Li
,
W.
,
2017
, “
Optimal Configuration of Vortex Generator for Heat Transfer Enhancement in a Plate-Fin Channel
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
2
), p.
021013
.
22.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2016
, “
Novel Design of Delta Winglet Pair Vortex Generator for Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
109
, pp.
1
9
.
23.
Nacer-Bey
,
M.
,
Russeil
,
S.
, and
Baudoin
,
B.
, “
PIV Visualizations to the Flow Structure Upstream of the Tubes in a Two-Row Plate-Fin-and-Tube Heat Exchanger
,”
Fourth International Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries
, pp.
63
68
.
24.
Habchi
,
C.
,
Lemenand
,
T.
,
Della Valle
,
D.
, and
Peerhossaini
,
H.
,
2010
, “
Turbulent Mixing and Residence Time Distribution in Novel Multifunctional Heat Exchangers-Reactors
,”
Chem. Eng. Process: Process Intensif.
,
49
(
10
), pp.
1066
1075
.
25.
ANSYS
, 2013, “Fluent, Academic Research, Version 15,”
ANSYS
, Canonsburg, PA.
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
27.
Yongsiri
,
K.
,
Eiamsa-ard
,
P.
,
Wongcharee
,
K.
, and
Eiamsa-ard
,
S.
,
2014
, “
Augmented Heat Transfer in a Turbulent Channel Flow With Inclined Detached-Ribs
,”
Case Stud. Therm. Eng.
,
3
, pp.
1
10
.
28.
Tanga
,
X.-Y.
, and
Zhu
,
D.-S.
,
2013
, “
Flow Structure and Heat Transfer in a Narrow Rectangular Channel With Different Discrete Rib Arrays
,”
Chem. Eng. Process.: Process Intensif.
,
69
, pp.
1
14
.
29.
ANSYS
,
2009
, “Standard and SST k-w Models, ANSYS Fluent 15.0 Theory Guide,”
ANSYS
, Canonsburg, PA, p.
4.31
.
30.
Warming
,
R. F.
, and
Beam
,
R. M.
,
1976
, “
Upwind Second-Order Difference Schemes and Applications in Aerodynamic Flows
,”
AIAA J.
,
14
(
9
), pp.
1241
1249
.
31.
Bejan
,
A.
,
1995
,
Forced Convection: Internal Flows
,
Duke University
,
Durham, NC
, pp.
395
438
.
32.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1994
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
880
885
.
33.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
1
), pp.
69
94
.
You do not currently have access to this content.