To support an effort to setup an industrial scale production facility to produce metal substrates coated with porous boiling surface (PBS) coating to enhance boiling heat transfer performance of these metal substrates, an axisymmetric transient heat transfer model with boundary conditions varying both in time and length dimensions has been proposed and solved to obtain the temperature evolution along the inner surface of a long finned tube heating and cooling in a multizone furnace. Experiments for finned tube heating and cooling were conducted using a single-zone batch furnace, and the experimental data obtained were compared with the simulation results to establish reasonable confidence in the proposed model and boundary conditions. A parametric study on several important operating parameters was conducted to gain better insights that can be used in making design and operating decisions. If required, the model can conveniently be extended to other types of substrates and furnace dimensions.

References

1.
Arai
,
N.
,
Nakajima
,
T.
,
Fukushima
,
T.
, and
Nakayama
,
Y.
,
1977
, “
Heat Transfer Tubes Enhancing Boiling and Condensation in Heat Exchangers of a Refrigerating Machine
,”
ASHRAE Trans.
,
83
(Pt. 2), pp.
58
70
.
2.
Provost
,
J.
, and
Lang
,
T.
,
2015
, “
Revamping, Debottlenecking and Optimizing Ethylene Plants Using Dual Enhanced Heat Transfer Solutions
,”
AIChE Spring Meeting
, Austin, TX, Apr. 26–30, Paper No. 112a.
3.
Wieland and Technip
,
2015
, “
Enhanced Heat Transfer Solutions—Energy Efficiency and Compactness for the LNG and Ethylene Industry
,” Wieland and Technip, Paris, France, Feb. 25,
2018
, http://www.technip.com/sites/default/files/technip/fields/publications/attachments/wieland_may_2015_web.pdf
4.
Bergles
,
A. E.
,
1988
, “
Some Perspectives on Enhanced Heat Transfer—Second-Generation Heat Transfer Technology
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1082
1096
.
5.
Kaskov
,
S. I.
,
Zubkov
,
N. N.
,
Popov
,
I. A.
,
Shchelchkov
,
A. V.
, and
Kulakov
,
V. V.
,
2014
, “
Study of Water Boiling on Microstructured Surfaces
,” 15th
International Heat Transfer Conference
, Kyoto, Japan, Aug. 10–15, Paper No.
IHTC15-9875
.https://www.researchgate.net/profile/Igor_Popov16/publication/299462340_STUDY_OF_WATER_BOILING_ON_MICROSTRUCTURED_SURFACES/links/56f9c76e08ae95e8b6d4042e.pdf
6.
Thome
,
J. R.
,
1990
,
Enhanced Boiling Heat Transfer
,
Hemisphere
, Philadelphia, PA.
7.
HTRI
,
2015
, “
Research Update: Boiling on Enhanced Surfaces
,” Heat Transfer Research, Inc., Navasota, TX, Feb. 25, 2018, https://www.htri.net/research-update--boiling-on-enhanced-surfaces
8.
Nishikawa
,
K.
, and
Fujita
,
Y.
,
1990
, “
Nucleate Boiling Heat Transfer and Its Augmentation
,”
Adv. Heat Transfer
,
20
, pp.
1
82
.
9.
Webb
,
R. L.
, and
Pais
,
C.
,
1992
, “
Nucleate Boiling Data for Five Refrigerants on Plain, Integral-Fin and Enhanced Tube Geometries
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1893
1904
.
10.
Czikk
,
A. M.
,
O'Neill
,
P. S.
, and
Gottzmann
,
C. F.
,
1981
, “
Nucleate Boiling From Porous Metal Films: Effect of Primary Variables
,”
Advanced in Enhanced Heat Transfer
, Vol.
18
,
American Society of Mechanical Engineers
,
New York
, p.
109
.
11.
Danilova
,
G. N.
,
Dyundin
,
V. A.
,
Borishanskaya
,
A. V.
,
Soloviyov
,
A. G.
,
Vol'nykh
,
Y. A.
, and
Kozyrev
,
A. A.
,
1990
, “
Effect of Surface Conditions on Boiling Heat Transfer of Refrigerants in Shell-and-Tube Evaporators
,”
Heat Transfer-Sov. Res.
,
22
(
1
), pp.
56
65
.https://www.osti.gov/biblio/6452771
12.
Scrulock
,
R. G.
,
1995
, “
Enhanced Boiling Heat Transfer Surfaces
,”
Cryogenics
,
35
(
4
), pp.
233
237
.
13.
Czikk
,
A. M.
, and
Kern
,
J. W.
,
1987
, “
Flame-Sprayed Ferrous Alloy Enhanced Boiling Surface
,” Union Carbide Corp, Houston, TX, U.S. Patent No.
4,663,243
.https://patents.google.com/patent/US4663243A/en
14.
O'neill
,
P. S.
, and
Gottzmann
,
C. F.
,
1980
, “
Improved Air Plant Main Condenser
,”
American Society of Mechanical Engineers
, New York.
15.
Chakravarthy
,
V. S.
,
Jibb
,
R. J.
,
Royal
,
J. H.
, and
Lockett
,
M. J.
,
2005
, “
Developments in Falling Film Type (Downflow) Reboilers in the Air Separation Industry
,”
Fifth International Conference on Enhanced Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
, Hoboken, NJ, Sept., pp.
264
272
.http://dc.engconfintl.org/cgi/viewcontent.cgi?article=1028&context=heatexchangerfall2005
16.
Honeywell UOP,
2018
, “
High Flux Tubing
,”
Honeywell UOP
,
Tonawanda, NY
, accessed May 19, 2018, https://www.uop.com/equipment/heat-transfer-distillation/high-flux-tubing/
17.
Batta
,
L. B.
,
1971
, “
Method for Forming Porous Aluminum Layer
,” Union Carbide Corp, Houston, TX, U.S. Patent No.
3,607,369
.https://patents.google.com/patent/US3607369A/en
18.
Kern
,
J. W.
, and
Tetreault
,
T. M.
,
1982
, “
Method for Forming a Porous Aluminum Layer
,” Union Carbide Corp, Houston, TX, U.S. Patent No.
4,358,485
.https://patents.google.com/patent/US4358485A/en
19.
Kwark
,
S. M.
,
Lu
,
Z.
,
Potempa
,
D. P.
, and
Shelat
,
M. R.
,
2017
, “
Novel Method for Producing Coating Compositions With Improved Coating Properties and Consistency Thereof
,” Praxair Technology Inc, Danbury, CT, U.S. Patent No.
20170108296
.https://patents.google.com/patent/US20170108296A1/en?oq=Patent+No.+20170108296.
20.
Lu
,
Z.
,
Kwark
,
S. M.
,
Corpus
,
J. M.
,
Lane
,
J. A.
,
Potempa
,
D. P.
, and
Shelat
,
M. R.
,
2017
, “
Porous Coatings
,” Praxair Technology Inc, Danbury, CT, U.S. Patent No.
20170108148
.https://patents.google.com/patent/US20170108148A1/en
21.
Leden
,
B.
,
1986
, “
A Control System for Fuel Optimization of Reheating Furnaces
,”
Scand. J. Metall.
,
15
(
1
), pp.
16
24
.http://ns.ivf.se/Global/Swerea_MEFOS/Dokument/Scand_J_Metallurgy_15(1986)_16-24.pdf
22.
Zhang
,
S. Q.
,
2000
, “
Study on Vacuum Heat Treatment Thermal Hysteresis Time
,”
Heat Treat. Met.
,
25
, pp.
38
39
.
23.
Dong
,
F.
,
2001
, “
The Determination on Heating Time of Vacuum Heat Treatment
,”
Mach. Met. Form.
,
9
, p.
56
.
24.
Zhang
,
J. G.
, and
Cong
,
P. W.
,
2005
, “
Vacuum Heat Treatment of Hot-Work Die Steel H 13
,”
Heat Treat. Met.
,
30
(
6
), pp.
77
80
.
25.
Hao
,
X.
,
Gu
,
J.
,
Chen
,
N.
,
Zhang
,
W.
, and
Zuo
,
X.
,
2008
, “
3-D Numerical Analysis on Heating Process of Loads Within Vacuum Heat Treatment Furnace
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1925
1931
.
26.
Tagliafico
,
L. A.
, and
Senarega
,
M.
,
2004
, “
A Simulation Code for Batch Heat Treatments
,”
Int. J. Therm. Sci.
,
43
(
5
), pp.
509
517
.
27.
Li
,
Z.
,
Barr
,
P. V.
, and
Brimacombe
,
J. K.
,
1988
, “
Computer Simulation of the Slab Reheating Furnace
,”
Can. Metall. Q.
,
27
(
3
), pp.
187
196
.
28.
Chapman
,
K. S.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1994
, “
Two-Dimensional Modeling and Parametric Studies of Heat Transfer in a Direct-Fired Furnace With Impinging Jets
,”
Combust. Sci. Technol.
,
97
(
1–3
), pp.
99
120
.
29.
Kim
,
J. G.
, and
Huh
,
K. Y.
,
2000
, “
Prediction of Transient Slab Temperature Distribution in the Re-Heating Furnace of a Walking-Beam Type of Rolling of Steel Slabs
,”
ISIJ Int.
,
40
(
11
), pp.
1115
1123
.
30.
Mochida
,
A.
,
Kudo
,
K.
,
Mizutani
,
Y.
,
Hattori
,
M.
, and
Nakamura
,
Y.
,
1997
, “
Transient Heat Transfer Analysis in Vacuum Furnaces Heated by Radiant Tube Burners
,”
Energy Convers. Manage.
,
38
(
10–13
), pp.
1169
1176
.
31.
Kim
,
M. Y.
,
2007
, “
A Heat Transfer Model for the Analysis of Transient Heating of the Slab in a Direct-Fired Walking Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
3740
3748
.
32.
Zhang
,
Y.
,
Deshpande
,
R.
,
Huang
,
D.
,
Chaubal
,
P.
, and
Zhou
,
C. Q.
,
2008
, “
Numerical Analysis of Blast Furnace Hearth Inner Profile by Using CFD and Heat Transfer Model for Different Time Periods
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
186
197
.
33.
Steinboeck
,
A.
,
Wild
,
D.
,
Kiefer
,
T.
, and
Kugi
,
A.
,
2010
, “
A Mathematical Model of a Slab Reheating Furnace With Radiative Heat Transfer and Non-Participating Gaseous Media
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5933
5946
.
34.
Chen
,
S.
,
2009
,
Flat-Rolled Steel Processes: Advanced Technologies, Chapter Modeling for Reheat Furnace Practices
,
CRC Press
,
Boca Raton, FL
, pp.
99
114
.
35.
Correia
,
S. A. C.
,
Ward
,
J.
, and
Sousa
,
J. L. V. A.
,
2002
, “
The Application of a Range of Zone Models to Predict the Thermal Behavior of a Continuously Operated Metal Reheating Furnace
,”
Sixth European Conference on Industrial Furnaces and Boilers
, Estoril, Portugal, Apr. 2–5, pp.
53
62
.
36.
Fitzgerald
,
F.
, and
Sheridan
,
A. T.
,
1972
, “
Prediction of Temperature and Heat Transfer Distribution in Gas-Fired Pusher-Reheating Furnaces
,”
Fourth Symposium on Flames and Industry
, London, pp.
107
113
.
37.
Garcia
,
D. F.
,
Sierra
,
M.
,
Rodriguez
,
R.
,
Campos
,
A.
,
Diaz
,
R.
,
Obese
,
F.
, and
Gonzalez
,
J. A.
,
1998
, “
Development of Scalable Real-Time Observers for Continuous Reheating Furnaces Based on Mathematical Modeling Techniques
,”
IEEE
Industry Applications Conference, 33rd IAS Annual Meeting
, St. Louis, MO, Oct. 12–15, pp.
2207
2216
.
38.
Harish
,
J.
, and
Dutta
,
P.
,
2005
, “
Heat Transfer Analysis of Pusher Type Reheat Furnace
,”
Ironmaking Steelmaking
,
32
(
2
), pp.
151
158
.
39.
Jaklic
,
A.
,
Vode
,
F.
, and
Kolenko
,
T.
,
2007
, “
Online Simulation Model of the Slab-Reheating Process in a Pusher-Type Furnace
,”
Appl. Therm. Eng.
,
27
(
5–6
), pp.
1105
1114
.
40.
Jang
,
J. H.
,
Lee
,
D. E.
,
Kim
,
M. Y.
, and
Kim
,
H. G.
,
2010
, “
Investigation of the Slab Heating Characteristics in a Reheating Furnace With Formation and Growth of Scale on the Slab Furnace
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
4326
4332
.
41.
Lindholm
,
D.
, and
Leden
,
B.
,
1999
, “
A Finite Element Method for Solution of the Three-Dimensional Time-Dependent Heat-Conduction Equation With Application for Heating of Steels in Reheating Furnaces
,”
Numer. Heat Transfer, Part A
,
35
(
2
), pp.
155
172
.
42.
Rhine
,
J. M.
, and
Tucker
,
R. J.
,
1991
,
Modeling of Gas-Fired Furnaces and Boilers and Other Industrial Heating Processes
,
McGraw-Hill
,
London
.
43.
Visser
,
J. A.
, and
van der Walt
,
J. C.
,
1994
, “
Numerical Investigation of a Method to Reduce the Reheating Time of Steel Bars
,”
Commun. Numer. Methods Eng.
,
10
(
1
), pp.
33
42
.
44.
Yang
,
B. Y.
,
Wu
,
C. Y.
,
Ho
,
C. J.
, and
Ho
,
T.-Y.
,
1995
, “
A Heat Transfer Model for Skidmark Formation on a Slab in a Reheating Furnace
,”
J. Mater. Process. Manuf. Sci.
,
3
(3), pp.
277
295
.
45.
Schneider
,
P. J.
,
1957
,
Conduction Heat Transfer
,
Addison-Wesley
,
Reading, MA
.
46.
COMSOL
, 2017,
COMSOL Multiphysics® Version 5.3a Reference Manual, Chapter View Factor Computation
,
COMSOL
,
Stockholm, Sweden
.
47.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
1
), pp.
359
368
.
48.
Kim
,
H. J.
,
An
,
B. H.
,
Park
,
J.
, and
Kim
,
D.-K.
,
2013
, “
Experimental Study on Natural Convection Heat Transfer From Horizontal Cylinders With Longitudinal Plate Fins
,”
J. Mech. Sci. Technol.
,
27
(
2
), pp.
593
599
.
49.
Churchill
,
S. W.
, and
Chu
,
H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
1329
.
50.
The Engineering Toolbox
,
2003
, “Aluminum—Radiation Heat Emissivity,” The Engineering Toolbox, accessed, May 19,
2018
, http://www.engineeringtoolbox.com/radiation-heat-emissivity-aluminum-d_433.html
You do not currently have access to this content.