The novel adaptive thermal metamaterial developed in this paper provides a unique thermal management capability that can address the needs of future spacecraft. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This metamaterial concept enables the development of materials with a highly nonlinear thermal conductivity as a function of temperature. Through enabling active or passive control of the metamaterials bulk effective thermal conductivity, this metamaterial that can improve the spacecraft's thermal management systems performance. This variable thermal conductivity is achieved through induced contact that results in changes in the F path length and the conductive path area. The contact can be generated internally using thermal strain from shape memory alloys, bimetal springs, and mismatches in coefficient of thermal expansion (CTE) or it can be generated externally using applied mechanical loading. The metamaterial can actively control the temperature of an interface by dynamically changing the bulk thermal conductivity controlling the instantaneous heat flux through the metamaterial. The design of thermal stability regions (regions of constant thermal conductivity versus temperature) into the nonlinear thermal conductivity as a function of temperature can provide passive thermal control. While this concept can be used in a wide range of applications, this paper focuses on the development of a metamaterial that achieves highly nonlinear thermal conductivity as a function of temperature to enable passive thermal control of spacecraft systems on orbit.

References

1.
Phoenix
,
A. A.
, and
Wilson
,
E.
,
2017
, “
Variable Thermal Conductance Metamaterials for Passive or Active Thermal Management
,”
ASME
Paper No. SMASIS2017-3767.
2.
Chiritescu
,
C.
, Cahill, D. G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., and Zschack, P.,
2007
, “
Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals
,”
Science
,
315
(
5810
), pp.
351
353
.
3.
Han
,
T.
, Bai, X., Liu, D., Gao, D., Li, B., Thong, J. T. L., and Qiu, C.-W.,
2015
, “
Manipulating Steady Heat Conduction by Sensu-Shaped Thermal Metamaterials
,”
Sci. Rep.
,
5
, p.
10242
.
4.
Narayana
,
S.
,
Savo
,
S.
, and
Sato
,
Y.
,
2013
, “
Transient Heat Flux Shielding Using Thermal Metamaterials
,”
Appl. Phys. Lett.
,
102
(
20
), p.
201904
.
5.
Shen
,
X. Y.
, Jiang, C., Li, Y., and Huang, J.,
2016
, “
Thermal Metamaterial for Convergent Transfer of Conductive Heat With High Efficiency
,”
Appl. Phys. Lett.
,
109
(
20
), p.
201906
.
6.
Kapadia
,
R. S.
,
2014
, “
Heat Flux Manipulation Using Thermal Meta-Materials
,”
Ph.D. thesis
, University of California, San Diego, CA.https://escholarship.org/uc/item/0bv984qf
7.
Chen
,
F.
, and
Lei
,
D. Y.
,
2015
, “
Experimental Realization of Extreme Heat Flux Concentration With Easy-to-Make Thermal Metamaterials
,”
Sci. Rep.
,
5
(
1
), p.
11552
.
8.
Yang
,
T. Z.
,
Vemuri
,
K. P.
, and
Bandaru
,
P. R.
,
2014
, “
Experimental Evidence for the Bending of Heat Flux in a Thermal Metamaterial
,”
Appl. Phys. Lett.
,
105
(
8
), p.
083908
.
9.
Hu
,
R.
, Zhou, S., Yu, X., and Luo, X.,
2016
, “
Exploring the Proper Experimental Conditions in 2D Thermal Cloaking Demonstration
,”
J. Phys. D
,
49
(
41
), p.
415302
.
10.
Vemuri
,
K. P.
,
Canbazoglu
,
F. M.
, and
Bandaru
,
P. R.
,
2014
, “
Guiding Conductive Heat Flux Through Thermal Metamaterials
,”
Appl. Phys. Lett.
,
105
(
19
), p.
193904
.
11.
Yang
,
T. Z.
, Wu, Q., Xu, W., Liu, D., Huang, L., and Chen, F.,
2016
, “
A Thermal Ground Cloak
,”
Phys. Lett. A
,
380
(
7–8
), pp.
965
969
.
12.
Fleury
,
R.
, and
Alu
,
A.
,
2014
, “
Cloaking and Invisibility: A Review (Invited Review)
,”
Prog. Electromagn. Res.
,
147
, pp.
171
202
.
13.
Gao
,
Y.
, and
Huang
,
J. P.
,
2013
, “
Unconventional Thermal Cloak Hiding an Object Outside the Cloak
,”
EPL
,
104
(
4
), p.
44001
.
14.
Vemuri
,
K. P.
, and
Bandaru
,
P. R.
,
2013
, “
Geometrical Considerations in the Control and Manipulation of Conductive Heat Flux in Multilayered Thermal Metamaterials
,”
Appl. Phys. Lett.
,
103
(
13
), p.
133111
.
15.
Raza
,
M.
, Liu, Y., Lee, E. H., and Ma, Y.,
2016
, “
Transformation Thermodynamics and Heat Cloaking: A Review
,”
J. Opt.
,
18
(
4
), p.
044002
.
16.
Park
,
G.
, Kang, S., Lee, H., and Choi, W.,
2017
, “
Tunable Multifunctional Thermal Metamaterials: Manipulation of Local Heat Flux Via Assembly of Unit-Cell Thermal Shifters
,”
Sci. Rep.
,
7
, p.
41000
.
17.
Hsieh
,
W. P.
, Chen, B., Li, J., Keblinski, P., and Cahill, D. G.,
2009
, “
Pressure Tuning of the Thermal Conductivity of the Layered Muscovite Crystal
,”
Phys. Rev. B
,
80
(
18
), p.
180302
.
18.
Ion
,
A.
, Frohnhofen, J., Wall, J., Kovacs, R., Alistar, M., Lindsay, J., Lopes, P., Chen, H.-T., and Baudisch, P.,
2016
, “
Metamaterial Mechanisms
,”
29th Annual Symposium on User Interface Software and Technology
, pp. 529--539.
19.
Marland
,
B.
,
Bugby
,
D.
, and
Stouffer
,
C.
,
2004
, “
Development and Testing of an Advanced Cryogenic Thermal Switch and Cryogenic Thermal Switch Test Bed
,”
Cryogenics
,
44
(
6–8
), pp.
413
420
.
20.
Guo
,
L.
, Zhang, X., Huang, Y., Hu, R., and Liu, C.,
2017
, “
Thermal Characterization of a New Differential Thermal Expansion Heat Switch for Space Optical Remote Sensor
,”
Appl. Therm. Eng.
,
113
, pp.
1242
1249
.
21.
Milanez
,
F. H.
, and
Mantelli
,
M. B. H.
,
2003
, “
Theoretical and Experimental Studies of a Bi-Metallic Heat Switch for Space Applications
,”
Int. J. Heat Mass Transfer
,
46
(
24
), pp.
4573
4586
.
22.
Lesieutre
,
G. A.
, Frecker, M., Adair, J. H., Yu, T., and Gigliotti, C. M.,
2017
, “
Multifunctional Thermal Structures Using Cellular Contract-Aided Complaint Mechanisms
,” The Pennsylvania State University, University Park, PA.
23.
Krishnan
,
V. B.
,
2004
, “
Design, Fabrication and Testing of a Shape Memory Alloy Based Cryogenic Thermal Conduction Switch
,”
Electronic theses and dissertations
, University of Central Florida, Orlando, FL.http://stars.library.ucf.edu/etd/100/
24.
Bulgrin
,
K. E.
, Ju, Y. S., Carman, G. P., and Lavine, A. S.,
2009
, “
A Tunable Magnetomechanical Thermal Switch for Thermal Management Purposes
,”
ASME
Paper No. HT2009-88571.
25.
Jeong
,
S. H.
,
Nakayama
,
W.
, and
Lee
,
S. K.
,
2012
, “
Experimental Investigation of a Heat Switch Based on the Precise Regulation of a Liquid Bridge
,”
Appl. Therm. Eng.
,
39
, pp.
151
156
.
26.
Beasley
,
M. A.
, Firebaugh, S. L., Edwards, R. L., Keeney, A. C., and Osiander, R.,
2004
, “
MEMS Thermal Switch for Spacecraft Thermal Control
,”
Proc. SPIE
, 5344, pp. 98–106.
27.
Simons, R. E., and Chu, R. C., 2000, “Application of Thermoelectric Cooling to Electronic Equipment: A Review and Analysis,”
IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 23, pp. 1–9.
28.
Riffat
,
S. B.
, and
Ma
,
X. L.
,
2004
, “
Improving the Coefficient of Performance of Thermoelectric Cooling Systems: A Review
,”
Int. J. Energy Res.
,
28
(
9
), pp.
753
768
.
29.
Colomer
,
A. M.
, Massaguer, E., Pujol, T., Comamala, M., Montoro, L., and González, J. R.,
2015
, “
Electrically Tunable Thermal Conductivity in Thermoelectric Materials: Active and Passive Control
,”
Appl. Energy
,
154
, pp.
709
717
.
30.
Zhao
,
D. L.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
15
24
.
31.
Twaha
,
S.
, Zhu, J., Yan, Y., and Li, B.,
2016
, “
A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
698
726
.
32.
Vlassov
,
V. V.
, de Sousa, F. L., Cuco, A. P. C., and Neto, A. J. S.,
2010
, “
New Concept of Space Radiator With Variable Emittance
,”
J. Braz. Soc. Mech. Sci. Eng.
,
32
(
4
), pp.
400
408
.
33.
Vlassov
,
V. V.
, Cuco, A. P. C., De Sousa, F. L., and Neto, A. J. S. S.,
2006
, “
Design Optimization of Two-Stage Radiator With Variable Emittance: Analysis of Concept Feasibility
,”
11th Brazilian Congress of Thermal Engineering and Sciences
, Paper No. ENCIT2006.
34.
Vlassov
,
V. V.
,
Panissi
,
D. L.
, and
de Sousa
,
F. L.
,
2017
, “
Analysis of Concept Feasibility and Results of Numerical Simulation of a Two-Stage Space Radiator With Variable Emissivity Coating
,”
Heat Transfer Eng.
,
38
(
10
), pp.
963
974
.
35.
Buhler
,
J.
, Funk, J., Paul, O., Steiner, F.-P., and Baltes, H.,
1995
, “
Thermally Actuated CMOS Micromirrors
,”
Sens. Actuators, A
,
47
(
1–3
), pp.
572
575
.
36.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2013
, “
Morphing High-Temperature Composite Plates Utilizing Thermal Gradients
,”
Compos. Struct.
,
100
, pp.
363
372
.
37.
Schweizer
,
S.
, Calmes, S., Laudon, M., and Renaud, Ph.,
1999
, “
Thermally Actuated Optical Microscanner With Large Angle and Low Consumption
,”
Sens. Actuators, A
,
76
(
1–3
), pp.
470
477
.
38.
Schmid
,
P.
,
Hernandez-Guillen
,
F. J.
, and
Kohn
,
E.
,
2003
, “
Diamond Switch Using New Thermal Actuation Principle
,”
Diamond Relat. Mater.
,
12
(
3–7
), pp.
418
421
.
39.
Singh
,
J.
, Gan, T., Agarwal, A., and Liw, S.,
2005
, “
3D Free Space Thermally Actuated Micromirror Device
,”
Sens. Actuators A
,
123–124
, pp.
468
475
.
40.
Zhu
,
Y.
,
Corigliano
,
A.
, and
Espinosa
,
H. D.
,
2006
, “
A Thermal Actuator for Nanoscale in Situ Microscopy Testing: Design and Characterization
,”
J. Micromech. Microeng.
,
16
(
2
), pp.
242
253
.
41.
Eckstein
,
E.
, Lamacchia, E., Pirrera, A., and Weaver, P. M., 2014, “
Thermally-Driven Snap-Through and Multistability Using Laminated Fibre-Metal Shells
,” Sixth European conference on composite materials (ECCM16), Seville, Spain, June 22–26.
42.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2015
, “
Thermally Driven Morphing With Hybrid Laminates and Metal Matrix Composites
,”
AIAA
Paper No. 2015-1428.
43.
Eckstein
,
E.
,
Pirrera
,
A.
, and
Weaver
,
P. M.
,
2016
, “
Thermally Driven Morphing and Snap-Through Behavior of Hybrid Laminate Shells
,”
AIAA J.
,
54
(
5
), pp.
1778
1788
.
44.
Pirrera
,
A.
,
Avitabile
,
D.
, and
Weaver
,
P. M.
,
2012
, “
On the Thermally Induced Bistability of Composite Cylindrical Shells for Morphing Structures
,”
Int. J. Solids Struct.
,
49
(
5
), pp.
685
700
.
45.
Calkins
,
F. T.
, and
Mabe
,
J. H.
,
2010
, “
Shape Memory Alloy Based Morphing Aerostructures
,”
ASME J. Mech. Des.
,
132
(
11
), p.
111012
.
46.
Jani
,
J. M.
, Leary, M., Subic, A., and Gibson, M. A.,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
47.
Toropova
,
M. M.
, and Steeves, C. A.,
2015
, “
Thermal Actuation Through Bimaterial Lattices
,”
ASME
Paper No. SMASIS2015-8855.
48.
Phoenix
,
A. A.
, and
Tarazaga
,
P. A.
,
2017
, “
Dynamic Model Reduction Using Data-Driven Loewner-Framework Applied to Thermally Morphing Structures
,”
J. Sound Vib.
,
396
, pp.
274
288
.
49.
Phoenix
,
A. A.
, and
Tarazaga
,
P. A.
,
2017
, “
Thermal Morphing Anisogrid Smart Space Structures—Part 1: Introduction, Modeling, and Performance of the Novel Smart Structural Application
,”
J. Vib. Control
, epub
50.
Phoenix
,
A. A.
,
Jeff
,
B.
, and
Tarazaga
,
P. A.
,
2017
, “
Thermal Morphing Anisogrid Smart Space Structures—Part 2: Ranking of Geometric Parameter Importance, Trust Region Optimization, and Performance Evaluation
,”
J. Vib. Control
, epub.
51.
Phoenix
,
A. A.
,
2017
, “
Thermal Morphing Anisogrid Smart Space Structures: Thermal Isolation Design and Linearity Evaluation
,”
Proc. SPIE
,
10164
, p.
101640M
.
52.
Phoenix
,
A. A.
,
2017
, “
Thermal Modeling and Design of the Anisogrid Morphing Structure for a Modular Optical Telescope Concept
,”
J. Astron. Telesc., Instrum., Syst.
,
3
(
4
), p.
047001
.
53.
Bergman, T. L., Incropera, F. P., DeWitt, D. P., and Lavine, A. S., 2011, Fundamentals of Heat and Mass Transfer, Wiley, Hoboken, NJ.
54.
Yovanovich
,
M.
,
1987
, “
Theory and Applications of Constriction and Spreading Resistance Concepts for Microelectronic Thermal Management
,”
International Symposium on Cooling Technology for Electronic Equipment
, Honolulu, HI, Mar. 17–21.
You do not currently have access to this content.