This paper presents the turbine blade leading edge model film cooling effectiveness with shaped holes, using the pressure sensitive paint (PSP) mass transfer analogy method. The effects of leading edge profile, coolant to mainstream density ratio, and blowing ratio are studied. Computational simulations are performed using the realizable k–ɛ (RKE) turbulence model. Effectiveness obtained by computational fluid dynamics (CFD) simulations is compared with experiments. Three leading edge profiles, including one semicylinder and two semi-elliptical cylinders with an after body, are investigated. The ratios of major to minor axis of two semi-elliptical cylinders are 1.5 and 2.0, respectively. The leading edge has three rows of shaped holes. For the semicylinder model, shaped holes are located at 0 deg (stagnation line) and ±30 deg. Row spacing between cooling holes and the distance between impingement plate and stagnation line are the same for three leading edge models. The coolant to mainstream density ratio varies from 1.0 to 1.5 and 2.0, and the blowing ratio varies from 0.5 to 1.0 and 1.5. Mainstream Reynolds number is about 100,000 based on the diameter of the leading edge cylinder, and the mainstream turbulence intensity is about 7%. The results provide an understanding of the effects of leading edge profile on turbine blade leading edge region film cooling with shaped hole designs.

References

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
3.
Han
,
J. C.
,
2013
, “
Fundamental Gas Turbine Heat Transfer
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021007
.
4.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on 3-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
5.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2015
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
Front. Heat Mass Transfer
,
6
(
8
), pp.
1
14
.
6.
Luckey
,
D. W.
,
Winstanley
,
D. K.
,
Hames
,
G. J.
, and
L'Ecuiyer
,
M. R.
,
1977
, “
Stagnation Region Gas Film Cooling for Turbine Blade Leading-Edge Applications
,”
AIAA J. Aircr.
,
14
(
5
), pp.
494
501
.
7.
Mick
,
W. J.
, and
Mayle
,
R. E.
,
1988
, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
,
110
(
1
), pp.
66
72
.
8.
Mehendale
,
A. B.
, and
Han
,
J. C.
,
1992
, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
,
114
(
4
), pp.
707
715
.
9.
Ou
,
S.
, and
Han
,
J. C.
,
1994
, “
Leading Edge Film Cooling Heat Transfer Through One Row of Inclined Film Slots and Holes Including Mainstream Turbulence Effect
,”
ASME J. Heat Transfer
,
116
(
3
), pp.
561
569
.
10.
Reiss
,
H.
, and
Bölcs
,
A.
,
2000
, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
161
169
.
11.
Kim
,
Y. J.
, and
Kim
,
S. M.
,
2004
, “
Influence of Shaped Injection Holes on Turbine Blade Leading Edge Film Cooling
,”
Int. J. Heat Mass Transfer
,
47
(2), pp.
245
256
.
12.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002.
13.
Lu
,
Y.
,
Allison
,
D.
, and
Ekkad
,
S. V.
,
2006
, “
Influence of Hole Angle and Shaping on Leading Edge Showerhead Film Cooling
,”
ASME
Paper No. GT2006-90370.
14.
Gao
,
Z.
, and
Han
,
J. C.
,
2009
, “
Influence of Film-Hole Shape and Angle on Showerhead Film Cooling Using PSP Technique
,”
ASME J. Heat Transfer
,
131
(
6
), p.
061701
.
15.
Li
,
S. J.
,
Yang
,
S. F.
, and
Han
,
J. C.
,
2014
, “
Effect of Coolant Density on Leading Edge Showerhead Film Cooling Using the Pressure Sensitive Paint Measurement Technique
,”
ASME J. Turbomach.
,
136
(
5
), p.
051011
.
16.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
,
1997
, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,”
ASME
Paper No. 97-GT-296.
17.
Chowdhury
,
N. H. K.
,
Qureshi
,
S. A.
,
Zhang
,
M. J.
, and
Han
,
J. C.
,
2017
, “
Influence of Turbine Blade Leading Edge Shape on Film Cooling With Cylindrical Holes
,”
Int. J. Heat Mass Transfer
,
115
(
Pt. B
), pp.
895
908
.
18.
York
,
W. D.
, and
Leylek
,
J. H.
,
2003
, “
Leading Edge Film-Cooling Physics—Part III: Diffused Hole Effectiveness
,”
ASME J. Turbomach.
,
125
(
2
), pp.
252
259
.
19.
Beimaert-Chartrel
,
G.
, and
Bogard
,
D. G.
,
2012
, “
CFD Predictions of Heat Transfer Coefficient Augmentation on a Simulated Film Cooled Turbine Blade Leading Edge
,”
ASME
Paper No. GT2012-70015.
20.
Rutledge
,
J. L.
, and
Polanka
,
M. D.
,
2014
, “
Computational Fluid Dynamics Evaluations of Unconventional Film Cooling Scaling Parameters on a Simulated Turbine Blade Leading Edge
,”
ASME J. Turbomach.
,
136
(
10
), p.
101006
.
21.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
22.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(5), p.
051002
.
23.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
You do not currently have access to this content.