Abstract

Fluctuations in incoming solar energy adversely affect the temperature stability within solar receivers, leading to a decrease in thermal efficiency. Therefore, it is essential to design a control system with the capability to maintain quasi-steady temperatures inside the reactor consistently throughout the day. This study introduces a dual-actuator control technology to regulate the temperature within a high-temperature cylindrical cavity-type gas receiver. The actuating system comprises two primary components. The first component involves a variable aperture mechanism, executed through a rotary mechanism made of stainless steel. This mechanism features seven holes of fixed diameters arranged in a half-circle configuration. The rotary mechanism is powered by a stepper motor regulated by a feedback control system. The second actuator is a mass flow controller (MFC) responsible for meticulous adjustment of the inlet gas flow directed toward the solar receiver. The direct normal irradiance (DNI) is simulated using a 10 kW high-flux solar simulator (HFSS) with a variable power supply ranging from 80 to 200 A. This setup enables the simulation of different operational conditions. The dual-actuator method concurrently adjusts both gas flowrate and aperture size. While utilizing each of these methods individually can achieve reasonable temperature control performance, the hybrid approach leverages the strengths of both control methods, resulting in a significant improvement in the temperature regulation performance of the solar receiver. Two control strategies, namely, proportional integral (PI) and model predictive control (MPC), were implemented to regulate the temperature inside a cavity-type gas receiver. Experimental tests indicate that the incorporating the dual-actuator controller is a promising technique, and its application can be extended to include additional parameters for utilization in a multi-input multi-output (MIMO) control system.

References

1.
Alsahlani
,
A.
,
Ozalp
,
N.
,
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
, and
Klausner
,
J.
,
2023
, “
A Reduced–Order Modeling of a Tubular Solar Reactor for Long Duration Thermochemical Energy Storage
,”
J. Energy Storage
,
67
, p.
107465
.
2.
Idris
,
M. G.
,
Hafeez
,
H. Y.
,
Mohammed
,
J.
,
Suleiman
,
A. B.
, and
Ndikilar
,
C. E.
,
2023
, “
A Review on Recent Development in the Spinel Ferrites–Based Materials for Efficient Solar Fuel (Hydrogen) Generation via Photocatalytic Water–Splitting
,”
Appl. Surf. Sci. Adv.
,
18
, p.
100468
.
3.
Bui
,
V. G.
,
Bui
,
T. M. T.
,
Nguyen
,
V. G.
,
Tran
,
V. N.
,
Truong
,
L. B. T.
, and
Pham
,
L. H. P.
,
2023
, “
Concept of Twining Injector System for Spark–Ignition Engine Fueled With Syngas–Biogas–Hydrogen Operating in Solar–Biomass Hybrid Energy System
,”
Int. J. Hydrogen Energy
,
48
(
18
), pp.
6871
6890
.
4.
Aykut
,
E.
,
Dursun
,
B.
, and
Görgülü
,
S.
,
2023
, “
Comprehensive Environmental and Techno–Economic Feasibility Assessment of Biomass-Solar on Grid Hybrid Power Generation System for Burdur Mehmet Akif Ersoy University Istiklal Campus
,”
Heliyon
,
9
(
11
), p.
e22264
.
5.
Li
,
L.
,
Xie
,
W.
,
Zhang
,
Z.
, and
Zhang
,
S.
,
2020
, “
Pressure Drop in Packed Beds With Horizontally or Vertically Stratified Structure
,”
Nucl. Eng. Technol.
,
52
(
11
), pp.
2491
2498
.
6.
Korba
,
D.
,
Huang
,
W.
,
Randhir
,
K.
,
Petrasch
,
J.
,
Klausner
,
J.
,
AuYeung
,
N.
, and
Li
,
L.
,
2022
, “
A Continuum Model for Heat and Mass Transfer in Moving-Bed Reactors for Thermochemical Energy Storage
,”
Appl. Energy
,
313
, p.
118842
.
7.
Rodrigues
,
D.
,
Alvarez Rivero
,
M.
,
Pinheiro
,
C. I. C.
,
Cardoso
,
J. P.
, and
Mendes
,
L. F.
,
2023
, “
Computational Model of a Calcium–Looping Fluidized Bed Calcination Reactor With Imposed Concentrated Solar Irradiance
,”
Sol. Energy
,
258
, pp.
72
87
.
8.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
Aperture Size Adjustment Using Model Based Adaptive Control Strategy to Regulate Temperature in a Solar Receiver
,”
Sol. Energy
,
159
, pp.
20
36
.
9.
Alsahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Simplified Numerical Approach to Characterize the Thermal Response of a Moving Bed Solar Reactor
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081010
.
10.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2018
, “
An Advanced Modeling and Experimental Study to Improve Temperature Uniformity of a Solar Receiver
,”
Energy
,
165
(
Part B
), pp.
984
998
.
11.
Alsahlani
,
A.
,
Randhir
,
K.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2022
, “
A Forward Feedback Control Scheme for a Solar Thermochemical Moving Bed Counter–Current Flow Reactor
,”
ASME J. Sol. Energy Eng.
,
144
(
3
), p.
031004
.
12.
Alsahlani
,
A.
,
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2023
, “
Implementation of a Model Predictive Control Strategy to Regulate Temperature Inside Plug–Flow Solar Reactor With Counter–Current Flow
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021013
.
13.
Alsahlani
,
A.
,
Randhir
,
K.
,
Hayes
,
M.
,
Schimmels
,
P.
,
Ozalp
,
N.
, and
Klausner
,
J.
,
2023
, “
Design of a Combined Proportional Integral Derivative Controller to Regulate the Temperature Inside a High–Temperature Tubular Solar Reactor
,”
ASME J. Sol. Energy Eng.
,
145
(
1
), p.
011011
.
14.
Wyttenbach
,
J.
,
Bougard
,
J.
,
Descy
,
G.
,
Skrylnyk
,
O.
,
Courbon
,
E.
,
Frère
,
M.
, and
Bruyat
,
F.
,
2018
, “
Performances and Modelling of a Circular Moving Bed Thermochemical Reactor for Seasonal Storage
,”
Appl. Energy
,
230
, pp.
803
815
.
15.
Flegkas
,
S.
,
Birkelbach
,
F.
,
Winter
,
F.
,
Freiberger
,
N.
, and
Werner
,
A.
,
2018
, “
Fluidized bed Reactors for Solid–Gas Thermochemical Energy Storage Concepts—Modelling and Process Limitations
,”
Energy
,
143
, pp.
615
623
.
16.
Uchino
,
T.
, and
Fushimi
,
C.
,
2021
, “
Fluidized Bed Reactor for Thermochemical Heat Storage Using Ca(OH)2/CaO to Absorb the Fluctuations of Electric Power Supplied by Variable Renewable Energy Sources: A Dynamic Model
,”
Chem. Eng. J.
,
419
, p.
129571
.
17.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on Heat Transfer Driven Dynamics and Control of Transient Variations in a Solar Receiver
,”
Sol. Energy
,
211
, pp.
700
711
.
18.
Abedini Najafabadi
,
H.
,
Ozalp
,
N.
,
Ophoff
,
C.
, and
Moens
,
D.
,
2019
, “
An Experimental Study on Temperature Control of a Solar Receiver Under Transient Solar Load
,”
Sol. Energy
,
186
, pp.
52
59
.
19.
Abedini Najafabadi
,
H.
, and
Ozalp
,
N.
,
2017
, “
Development of a Control Model to Regulate Temperature in a Solar Receiver
,”
Renew. Energy
,
111
, pp.
95
104
.
20.
Abuseada
,
M.
, and
Ozalp
,
N.
,
2020
, “
Experimental and Numerical Study on a Novel Energy Efficient Variable Aperture Mechanism for a Solar Receiver
,”
Sol. Energy
,
197
, pp.
396
410
.
21.
Mészáros
,
A.
,
Rusnák
,
A.
, and
Fikar
,
M.
,
1999
, “
Adaptive Neural PID Control Case Study: Tubular Chemical Reactor
,”
Comput. Chem. Eng.
,
23
, pp.
S847
S850
.
22.
Al Sahlani
,
A.
, and
Ozalp
,
N.
,
2022
, “
An Overview of Process Temperature Control in Solar Thermochemical Energy Storage Systems
,”
Annu. Rev. Heat Transfer
,
25
(
1
), pp.
397
441
.
23.
Alsahlani
,
A.
, and
Ozalp
,
N.
,
2023
, “
Experimental Performance of a Nonlinear Control Strategy to Regulate Temperature of a High–Temperature Solar Reactor
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
051011
.
24.
Rowe
,
S. C.
,
Hischier
,
I.
,
Palumbo
,
A. W.
,
Chubukov
,
B. A.
,
Wallace
,
M. A.
,
Viger
,
R.
,
Lewandowski
,
A.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
,
2018
, “
Nowcasting, Predictive Control, and Feedback Control for Temperature Regulation in a Novel Hybrid Solar–Electric Reactor for Continuous Solar–Thermal Chemical Processing
,”
Sol. Energy
,
174
, pp.
474
488
.
25.
Saade
,
E.
,
Clough
,
D. E.
, and
Weimer
,
A. W.
,
2014
, “
Model Predictive Control of a Solar–Thermal Reactor
,”
Sol. Energy
,
102
, pp.
31
44
.
26.
Rajan
,
A.
,
Abouseada
,
M.
,
Manghaipathy
,
P.
,
Ozalp
,
N.
,
Majid
,
F. A.
,
Salem
,
A.
, and
Srinivasa
,
A.
,
2016
, “
An Experimental and Analytical Study on the Feasibility of SMA Spring Driven Actuation of an Iris Mechanism
,”
Appl. Therm. Eng.
,
105
, pp.
849
861
.
27.
Verstraete
,
S.
,
Abedini
,
H.
,
Alsahlani
,
A.
,
Ophoff
,
C.
, and
Ozalp
,
N.
,
2025
, “
A Feedback Control Strategy to Regulate the Temperature in a Nonlinear Solar Receiver
,”
ASME J. Sol. Energy Eng.
,
147
(
2
), p.
021006
.
28.
Abuseada
,
M.
,
Ophoff
,
C.
, and
Ozalp
,
N.
,
2019
, “
Characterization of a New 10 kWe High Flux Solar Simulator via Indirect Radiation Mapping Technique
,”
ASME J. Sol. Energy Eng.
,
141
(
2
), p.
021005
.
29.
Andreas
,
A.
, and
Stoffel
,
T.
,
2006
, “
Measurement and Instrumentation Data
,”
University of Nevada (UNLV)
,
Las Vegas, NV
, NREL Report No. DA-5500-56509.
You do not currently have access to this content.