Abstract

An overview of carousel heliostats is given. The general advantages and disadvantages are explained first. To distinguish between the different designs, possible variants of the carousel architecture and of the main components are described. Most of these variants can be found in the designs published so far, which are briefly presented. Finally, the cost efficiency of carousel heliostats in general is discussed.

References

1.
Pfahl
,
A.
,
2014
, “
Survey of Heliostat Concepts for Cost Reduction
,”
ASME Sol. Energy Eng.
,
136
(
1
), p.
014501
.
2.
Pfahl
,
A.
,
Coventry
,
J.
,
Röger
,
M.
,
Wolfertstetter
,
F.
,
Vásquez-Arango
,
J. F.
,
Gross
,
F.
,
Arjomandi
,
M.
,
Schwarzbözl
,
P.
,
Geiger
,
M.
, and
Liedke
,
P.
,
2017
, “
Progress in Heliostat Development
,”
Sol. Energy
,
152
, pp.
3
37
.
3.
Gross
,
B.
,
2020
, “Beyond CSP—A Trillion Dollar Opportunity,” Plenary Presentation at SolarPACES 2020 Conference, online event, Sept. 28–Oct. 2.
4.
Gross
,
D. A.
,
Pelletier
,
B.
,
Khong
,
T.
,
Sonn
,
A.
,
Schulte
,
D.
, and
Schell
,
S.
,
2022
, “
Simulation, Control, and Verification of Novel Closed-Chain Kinematics
,”
AIP Conf. Proc.
,
2445
(
1
), p.
030011
.
5.
Kattke
,
K.
,
2023
, “
SunRing Heliostat: Minimizing Slope Error With Smart Design and Assembly
,”
SolarPACES 2023 Conference
,
Sydney
,
Oct. 10–13
.
6.
Pfahl
,
A.
,
Bouzekri
,
H.
,
Djdiaa
,
A.
,
Benitez
,
D.
,
Nettelroth
,
V.
,
Rheinländer
,
J.
, and
Krause
,
A.
,
2022
, “
Heliostat Innovation in Detail to Reach Challenging Cost Target
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120018
.
7.
Pfahl
,
A.
, and
Rong
,
A.
,
2022
, “
Low-Cost Movable Heliostat
,”
AIP Conf. Proc.
,
2445
(
1
), p.
120019
.
8.
Zaibel
,
R.
,
Dagan
,
E.
,
Karni
,
J.
, and
Ries
,
H.
,
1995
, “
An Astigmatic Corrected Target-Aligned Heliostat for High Concentration
,”
Sol. Energy Mater. Sol. Cells
,
37
(
2
), pp.
191
202
.
9.
Buck
,
R.
, and
Teufel
,
E.
,
2009
, “
Comparison and Optimization of Heliostat Canting Methods
,”
ASME J. Sol. Energy Eng.
,
131
(
1
), p.
011001
.
10.
Mancini
,
T. R.
,
Heller
,
P.
,
Jones
,
S.
, and
Romero
,
M.
,
2000
, “Catalog of Solar Heliostats,” SolarPACES Report No. III-1/00, https://www.yumpu.com/en/document/view/10406571/catalog-of-solar-heliostats-fik-fikaorg
11.
Wei
,
X.
,
Lu
,
Z.
,
Yu
,
W.
,
Zhang
,
H.
, and
Wang
,
Z.
,
2011
, “
Tracking and Ray Tracing Equations for the Target-Aligned Heliostat for Solar Tower Power Plants
,”
Renew. Energy
,
36
(
10
), pp.
2687
2693
.
12.
Weinrebe
,
G.
,
2016
, “
Heliostat Cost Optimization Study
,”
AIP Conf. Proc.
,
1734
(
1
), p.
160018
.
13.
Emes
,
E.
,
Jafari
,
A.
,
Pfahl
,
A.
,
Coventry
,
J.
, and
Arjomandi
,
M.
,
2021
, “
A Review of Static and Dynamic Heliostat Wind Loads
,”
Sol. Energy
,
225
, pp.
60
82
.
14.
Pfahl
,
A.
,
2018
, “
Wind Loads on Heliostats and Photovoltaic Trackers
,”
PhD thesis
,
DLR, Eindhoven University of Technology
,
Eindhoven
, https://pure.tue.nl/ws/files/99010995/20180621_Pfahl.pdf
15.
Kolb
,
G. J.
,
Jones
,
S. A.
,
Donnelly
,
M. W.
,
Gorman
,
D.
,
Thomas
,
R.
,
Davenport
,
R.
, and
Lumia
,
R.
,
2007
, “Heliostat Cost Reduction Study,” SANDIA Report SAND2007-3293, Albuquerque, NM, Paragraph A.3.
16.
Pfahl
,
A.
, and
Dohmen
,
V.
,
2023
, “
Low-Cost Materials for Heliostats
,”
SolarPACES 2023 Conference
,
Sydney
,
Oct. 10–13
.
17.
Liedke
,
P.
,
Lewandowski
,
A.
,
Pfahl
,
A.
, and
Hölle
,
E.
,
2016
, “
Precise Low Cost Chain Gears for Heliostats
,”
AIP Conf. Proc.
,
1734
(
1
), p.
020014
.
18.
Pfahl
,
A.
,
Randt
,
M.
,
Holze
,
C.
, and
Unterschütz
,
S.
,
2013
, “
Autonomous Light-Weight Heliostat With Rim Drives
,”
Sol. Energy
,
92
, pp.
230
240
.
19.
Pfahl
,
A.
,
Randt
,
M.
,
Meier
,
F.
,
Zaschke
,
M.
,
Geurts
,
C. P. W.
, and
Buselmeier
,
M.
,
2015
, “
A Holistic Approach for Low Cost Heliostat Fields
,”
Energy Procedia
,
69
, pp.
178
187
(SolarPACES 2014 Conference, Beijing, China, Sept. 16–19).
20.
Prahl
,
P. C.
,
Pfahl
,
A.
, and
Röger
,
M.
,
2015
, “Heliostat für Solarkraftwerke oder Solarkonzentratoren,” DLR, German Patent DE102015202084A1, https://patents.google.com/patent/DE102015202084A1/en?oq=DE102015202084A1
21.
Preßmair
,
R.
, and
Buchroithner
,
A.
,
2023
, “
The FLAP Heliostat—A Novel Low-Cost Heliostat Design Featuring a Mirror Protection Mechanism Based on Dual-Use of the Elevation Drive
,”
SolarPACES 2023 Conference
,
Sydney
,
Oct. 10–13
.
22.
Preßmair
,
R.
, and
Buchroithner
,
A.
,
2021
, “Foldable and Tiltable Device for the Conversion or Deflection of Solar Radiation,” Technische Universität Graz, European Patent No. EP3916319B1, https://patents.google.com/patent/EP3916319B1/en?oq=EP3916319B1
23.
Preßmair
,
R.
, and
Buchroithner
,
A.
,
2022
, “Concept Animation FLAP-Heliostat,” https://www.researchgate.net/publication/363054761_Concept_Animation_FLAP-Heliostat
24.
Pfahl
,
A.
,
Rheinländer
,
J.
,
Krause
,
A.
,
Buck
,
R.
,
Giuliano
,
S.
,
Hertel
,
J.
,
Blume
,
K.
,
Schlichting
,
T.
,
Janotte
,
N.
, and
Ries
,
A.
,
2019
, “
First Lay-Down Heliostat With Monolithic Mirror-Panel, Closed Loop Control, and Cleaning System
,”
AIP Conf. Proc.
,
2126
(
1
), p.
030042
.
25.
China Solar Thermal Alliance
,
2020
, “SUPCON SOLAR Won the SolarPACES Technology Innovation Award 2020,” http://en.cnste.org/html/csp/2020/1009/911.html, Accessed May 2024.
26.
Heliogen
,
2023
, “Introducing Heliogen’s ChariotAV, Our Field-Tested Autonomous Cleaning Vehicle,” https://www.youtube.com/watch?v=WtVmEo3Tw9k, Accessed November 2023.
27.
Deflandre
,
J.
,
Matarasso
,
P.
, and
Traisnel
,
J.-P.
,
1978
, “Heliostats,” U.S. Patent No. US4129360, https://patents.google.com/patent/US4129360A/en?oq=US4129360
28.
Sandia Heliostat Development Division
,
1982
, “Second Generation Heliostat Evaluation Executive Summary,” Technical Report: SAND81-8033, Sandia National Laboratories, Albuquerque, NM, https://www.osti.gov/biblio/5352829/
29.
Sayre
,
R. K.
,
1980
, “Heliostat Assemblies,” U.S. Patent No. US4209231A, https://patents.google.com/patent/US4209231A/en?oq=US4209231A
30.
Weinrebe
,
G.
,
Schitz-Goeb
,
M.
, and
Schiel
,
W.
,
1996
, “
On the Performance of the ASM 150 Stressed Membrane Heliostat
,”
Proceedings of the International Solar Energy Conference
,
San Antonio, TX
,
Mar. 31–Apr. 3
, pp.
113
117
.
31.
Weinrebe
,
G.
,
2000
, “
Technische, ökologische und ökonomische Analyse von Solarthermischen Turmkraftwerken
,”
PhD thesis
,
Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart
,
Germany
, https://www.academia.edu/109569970/Technische_%C3%B6kologische_und_%C3%B6konomische_Analyse_von_solarthermischen_Turmkraftwerken
32.
Kurup
,
P.
,
Akar
,
S.
,
Glynn
,
S.
,
Augustine
,
C.
, and
Davenport
,
P.
,
2022
, “Cost Update: Commercial and Advanced Heliostat Collectors,” NREL, Golden, CO, Technical-Report NREL/TP-7A40-80482.
33.
Stegall
,
N.
,
Kattke
,
K.
, and
Sommers
,
R.
,
2021
, “Systems and Methods for Mounting a Heliostat,” Solar Dynamics, International Patent No. WO 2021/231453A1, https://patents.google.com/patent/WO2021231453A1/en?oq=WO+2021%2f231453A1
34.
Pquadrum Engineering
,
2017
, “First Prototype of PQ Heliostat Ready for Testing,” https://pquadrum.com/pq-post-solis-ready-for-testing/, Accessed May 2024.
35.
Pedretti-Rodi
,
A.
,
2019
, “Method and Device for Producing a Concrete Workpiece,” Pquadrum Engineering SA, International Patent No. WO2019/183737A1, https://patents.google.com/patent/WO2019183737A1/en?oq=WO2019%2f183737A1
36.
Baker
,
J.
,
Syssoev
,
N.
, and
Fyke
,
A.
,
2016
, “Heliostat Array,” Edisun Microgrids Inc., U.S. Patent No. US9477065B1, https://patents.google.com/patent/US9477065B1/en?oq=US9477065B1
37.
Cabanillas Saldana
,
J. P.
,
2010
, “Dual-Axis Solar Tracker,” U.S. Patent No. US 2010/0024861 A1, https://patents.google.com/patent/US20100024861A1/en?oq=US+2010%2f0024861+A1
38.
Pfahl
,
A.
, and
Liedke
,
P.
,
2019
,
Kostengünstige Spiegelsandwichfacetten für Heliostaten, Schlussbericht zum BMWi-Projekt SPACE
,
DLR, Institute of Solar Research
,
Cologne
.
39.
Weinrebe
,
G.
,
Schlichting
,
T.
,
Schweitzer
,
A.
,
Wette
,
J.
,
Yesildag
,
N.
,
Frizen
,
N.
,
Wroblewski
,
B.
,
Mayer
,
T.
, and
Mies
,
D.
,
2022
,
Wirtschaftlichere Heliostaten mit Sandwichkonzentrator, Karussellnachführung und Optischer Closed-Loop-Regelung, Schlussbericht zum BMWi-Projekt SAHEL
,
sbp GmbH
,
Stuttgart
.
40.
Cordes
,
S.
,
Prosinečki
,
T. C.
, and
Wieghardt
,
K.
,
2012
, “
An Approach to Competitive Heliostat Fields
,”
SolarPACES 2012 Conference
,
Marrakesh, Morocco
,
Sept. 11–14
.
41.
Pidaparthi
,
A. S.
, and
Hoffmann
,
J. E.
,
2017
, “
Effect of Heliostat Size on the Levelized Cost of Electricity for Power Towers
,”
AIP Conf. Proc.
,
1850
(
1
), p.
030038
.
You do not currently have access to this content.