Abstract

Clean drinking water and electricity production utilizing non-conventional sources of energy is the global demand for sustainable development. Ultrafast heat transfer fluids have delivered impressive results in photovoltaic (PV)-integrated solar thermal systems, in recent times. Efforts have been made for the productivity and electricity augmentation of solar still equipped with helically coilled heat exchanger and coupled with different integrations, viz., (a) partially covered N-photovoltaic thermal compound parabolic concentrator (N-PVT-CPC), (b) partially covered N-photovoltaic thermal flat plate collector (N-PVT-FPC), (c) N-FPC-CPC, and (d) N-flat plate collector (N-FPC). System design has also been modified by adding a roof-top semi-transparent PV module and built-in passive copper condenser (circulation mode), and effect of carbon quantum dots (CQDs) water-based nanofluids, nanoparticles volume concentration, and packing factor (βc) of the PV module has been studied by developing generalized thermal modeling of the system (special cases). Overall, 41.1%, 21.52%, 22.01%, and 10.01% rise in evaporative HTCs is observed in FPC-CPC, PVT-CPC, FPC, and PVT-FPC integrations, respectively. Thermal exergy is found to be higher for FPC-CPC integration, and it follows the enhancement order as FPC-CPC (max-0.147 kW) > PVT-CPC (0.088 kW) > FPC (0.038 kW) > PVT-FPC (0.028 kW). In reference to the base fluid, significant enhancement in the daily productivity is observed for FPC-CPC (10.9%) and PVT-CPC (5.16%) integrations using CQD-NPs. The production cost of potable water has also been estimated for all the cases for n = 30 and n = 50 years life span and i = 4% and 8% interest rates, and it is found to be the lowest (0.014 $/L) for FPC-CPC integration using CQD-NPs (n = 30 years, i = 4%).

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Belessiotis
,
V.
,
Kalogirou
,
S.
, and
Delyannis
,
E.
,
2016
,
Thermal Solar Desalination: Methods and Systems
, 1st ed.,
Elsevier, Academic Press
,
United States
.
2.
Rai
,
S. N.
, and
Tiwari
,
G. N.
,
1983
, “
Single Basin Solar Still Coupled With Flat Plate Collector
,”
Energy Convers. Manage.
,
23
(
3
), pp.
145
149
.
3.
Deniz
,
E.
,
2016
, “
Energy and Exergy Analysis of Flat Plate Solar Collector-Assisted Active Solar Distillation System
,”
Desalin. Water Treat.
,
57
(
51
), pp.
24313
24321
.
4.
Singh
,
D. B.
, and
Tiwari
,
G. N.
,
2016
, “
Effect of Energy Metrices on Life Cycle Cost Analysis of Partially Covered Photovoltaic Compound Parabolic Concentrator Collector Active Solar Distillation System
,”
Desalination
,
397
(
21
), pp.
75
91
.
5.
Alklaibi
,
A. M.
,
Sundar
,
L. S.
, and
Sousa
,
A. C. M.
,
2021
, “
Experimental Analysis of Exergy Efficiency and Entropy Generation of Diamond/Water Nanofluids Flow in a Thermosyphon Flat Plate Solar Collector
,”
Int. Commun. Heat Mass Transfer
,
120
(
1
), p.
105057
.
6.
Zafar
,
M. F.
,
Ali
,
M.
,
Akhter
,
J.
,
Kaleem
,
M.
, and
Sheikh
,
N. A.
,
2022
, “
Characterization and Performance Investigation of Metallic Oxides Based Nanofluids in Compound Parabolic Concentrating Solar Collector
,”
Sustain. Energy Technol. Assess.
,
54
(
1
), p.
102786
.
7.
Elharoun
,
O.
,
Tawfik
,
M.
,
El-Sharkawy
,
I. I.
, and
Zeidan
,
E.
,
2023
, “
Experimental and Numerical Study of Photovoltaic Performance Integrated With a Nanofluid-Based Optical Filter and a Compound Parabolic Concentrator
,”
Energy Convers. Manage.
,
291
(
17
), p.
117278
.
8.
Allouhi
,
A.
, and
Amine
,
M. B.
,
2020
, “
Heat Pipe Flat Plate Solar Collectors Operating With Nanofluids
,”
Sol. Energy Mater. Sol. Cells
,
219
(
1
), p.
10798
.
9.
Bait
,
O.
, and
Si-Ameur
,
M.
,
2018
, “
Enhanced Heat and Mass Transfer in Solar Stills Using Nano-Fluids: A Review
,”
Sol. Energy
,
170
(
12
), pp.
694
722
.
10.
Mahian
,
O.
,
Kianifar
,
A.
,
Heris
,
S. Z.
,
Wen
,
D.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2017
, “
Nanofluids Effects on the Evaporation Rate in a Solar Still Equipped With a Heat Exchanger
,”
Nano Energy
,
36
(
6
), pp.
134
155
.
11.
Nazari
,
S.
,
Safarzadeh
,
H.
, and
Bahiraei
,
B.
,
2019
, “
Experimental and Analytical Investigations of Productivity, Energy and Exergy Efficiency of a Single Slope Solar Still Enhanced With Thermo-Electric Channel and Nanofluid
,”
Renewable Energy
,
135
(
6
), pp.
729
744
.
12.
Iqbal
,
A.
,
Mahmoud
,
M. S.
,
Sayed
,
E. T.
,
Elsaid
,
K.
,
Abdelkareem
,
M. A.
,
Alawadhi
,
H.
, and
Olabi
,
A. G.
,
2021
, “
Evaluation of the Nano-Fluid Assisted Desalination Through Solar Stills in the Last Decade
,”
J. Environ. Manage.
,
277
(
1
), p.
111415
.
13.
Aderibigbe
,
D. A.
,
2019
, “
Heat and Mass Transfer Processes and the Performance Evaluation in Single-Slope Solar Stills
,”
ASME J. Sol. Energy Eng.
,
141
(
6
), p.
061007
.
14.
Borode
,
A.
,
Ahmed
,
N.
, and
Olubambi
,
P.
,
2019
, “
A Review of Solar Collectors Using Carbon Based Nanofluids
,”
J. Cleaner Prod.
,
241
(
36
), p.
118311
.
15.
Singh
,
J.
,
Mittal
,
M. K.
, and
Khullar
,
V.
,
2022
, “
Experimental Study of Single-Slope Solar Still Coupled With Nanofluid-Based Volumetric Absorption Solar Collector
,”
ASME J. Sol. Energy Eng.
,
144
(
1
), p.
011011
.
16.
Tiwari
,
G.N.
, and
Sahota
,
L.
,
2017
,
Advanced Solar Distillation Systems: Basic Principles, Thermal Modeling and Its Applications
,
Springer (Nature)
,
London, UK
.
17.
Boucanova
,
M. P.
,
Vital
,
C. V. P.
,
Rativa
,
D.
, and
Gómez-Malagón
,
L. A.
,
2022
, “
Single Slope Solar Distiller Performance Using Metallic Nanofluids
,”
Sol. Energy
,
245
(
15
), pp.
1
10
.
18.
Sahota
,
L.
,
Arora
,
S.
,
Singh
,
H. P.
, and
Sahoo
,
G.
,
2020
, “
Thermo-Physical Characteristics of Passive Double Slope Solar Still Loaded With MWCNTs and Al2O3-Water Based Nanofluid
,”
Mater. Today: Proc.
,
32
(
3
), pp.
344
349
.
19.
Arora
,
S.
,
Singh
,
H. P.
,
Sahota
,
L.
,
Arora
,
M. K.
,
Arya
,
R.
,
Singh
,
S.
,
Jain
,
A.
, and
Singh
,
A.
,
2020
, “
Performance and Cost Analysis of Photovoltaic Thermal (PVT)-Compound Parabolic Concentrator (CPC) Collector Integrated Solar Still Using CNT-Water Based Nanofluids
,”
Desalination
,
495
(
23
), p.
114595
.
20.
Sahota
,
L.
,
Saini
,
V.
,
Jain
,
V. K.
, and
Tiwari
,
G. N.
,
2019
, “
Performance and Cost Analysis of a Modified Built-in-Passive Condenser and Semi-Transparent Photovoltaic Module Integrated Passive Solar Distillation System
,”
J. Energy Storage
,
24
(
4
), p.
100809
.
21.
Kandeal
,
A. W.
,
Xu
,
Z.
,
Peng
,
G.
,
Hamed
,
M. H.
,
Kabeel
,
A. E.
,
Yang
,
N.
, and
Sharshir
,
S. W.
,
2022
, “
Thermo-Economic Performance Enhancement of a Solar Desalination Unit Using External Condenser, Nanofluid, and Ultrasonic Foggers
,”
Sustain. Energy Technol. Assess.
,
52
(
4
), p.
102348
.
22.
Deshmukh
,
K.
,
Karmare
,
S.
, and
Patil
,
P.
,
2023
, “
Experimental Investigation of Convective Heat Transfer Performance of TiN Nanofluid Charged U-Pipe Evacuated Tube Solar Thermal Collector
,”
Appl. Therm. Eng.
,
225
(
11
), p.
120199
.
23.
Toosi
,
S. S. A.
,
Goshayeshi
,
H. R.
,
Zahmatkesh
,
I.
, and
Nejati
,
V.
,
2023
, “
Experimental Assessment of New Designed Stepped Solar Still With Fe3O4 + Graphene Oxide + Paraffin as Nanofluid Under Constant Magnetic Field
,”
J. Energy Storage
,
62
(
6
), p.
106795
.
24.
Liu
,
H.
,
Ji
,
D.
,
An
,
M.
,
Kandeal
,
A. W.
,
Thakur
,
A. K.
,
Elkadeem
,
M. R.
,
Algazzar
,
A. M.
,
Abdelaziz
,
G. B.
, and
Sharshir
,
S. W.
,
2023
, “
Performance Enhancement of Solar Desalination Using Evacuated Tubes, Ultrasonic Atomizers, and Cobalt Oxide Nanofluid Integrated With Cover Cooling
,”
Process Saf. Environ. Prot.
,
171
(
3
), pp.
98
108
.
25.
Heris
,
S. Z.
,
Esfahany
,
M. N.
, and
Etemad
,
S. G.
,
2007
, “
Experimental Investigation of Convective Heat Transfer of Al2O3-Water Nanofluid in Circular Tube
,”
Int. J. Heat Fluid Flow
,
28
(
2
), pp.
203
210
.
26.
Farajollahi
,
B.
,
Etemad
,
S. G.
, and
Hojjat
,
M.
,
2010
, “
Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
12
17
.
27.
Abdallah
,
S.
, and
Aldarabseh
,
S. M.
,
2024
, “
Performance of Modified Conical Solar Still Integrated With Continuous Volume Flowrate
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011001
.
28.
Said
,
Z.
,
Saidur
,
R.
, and
Rahim
,
N. A.
,
2014
, “
Optical Properties of Metal Oxides Based Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
59
(
10
), pp.
46
54
.
29.
Modi
,
K. V.
,
Shukla
,
D. L.
, and
Ankoliya
,
D. B.
,
2019
, “
A Comparative Performance Study of Double Basin Single Slope Solar Still With and Without Using Nanoparticles
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031008
.
30.
Rahman
,
M. M.
,
Mojumder
,
S.
,
Saha
,
S.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2014
, “
Effect of Solid Volume Fraction and Tilt Angle in a Quarter Circular Solar Thermal Collectors Filled With CNT–Water Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
57
, pp.
79
90
.
31.
Abdullah
,
A. S.
,
Alqsair
,
U.
,
Aljaghtham
,
M. S.
,
Kabeel
,
A. E.
,
Omara
,
Z. M.
, and
Ess
,
F. A.
,
2023
, “
Productivity Augmentation of Rotating Wick Solar Still Using Different Designs of Porous Breathable Belt and Quantum Dots Nanofluid
,”
Ain Shams Eng. J.
,
14
(
12
), p.
102248
.
32.
Tiwari
,
G. N.
,
2002
,
Solar Energy: Fundamentals, Designs, Modeling and Applications
,
Narosa Publications
,
New Delhi, India
.
33.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
34.
Xue
,
Q. Z.
,
2005
, “
Model for Thermal Conductivity of Carbon Nanotube-Based Composites
,”
Phys. B Condens. Matter
,
368
(
8
), pp.
302
307
.
35.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p.
571
.
36.
Mahian
,
O.
,
Kianifar
,
A.
,
Sahin
,
A. Z.
, and
Wongwises
,
S.
,
2014
, “
Entropy Generation During Al2O3/ Water Nanofluid Flow in a Solar Collector: Effects of Tube Roughness, Nanoparticle Size and Different Thermo-Physical Models
,”
Int. J. Heat Mass Transfer
,
78
(
11
), pp.
64
75
.
You do not currently have access to this content.