Abstract

This paper applies different methodologies through measurement and simulation for the partial shading analysis of solar photovoltaic (SPV) arrays. A two-diode photovoltaic solar cell model evaluates SPV arrays under shading conditions. Experimental data from two identical 1.5 kWp PV generators were used as a study case. One is subjected to shading caused by the branches of a tree, resulting in its electricity production being affected for several days, and the other is shadow-free. The authors use a methodology based on short circuit of the solar cells to determine the different irradiance levels. It was considered because it avoids using several irradiance sensors to map the shaded and unshaded regions in a shadow SPV array. The two-diode photovoltaic solar cell model used was developed in matlab/simulink. The applied model and the map irradiance methodology can be used to represent current–voltage (IV) curves in complex shading. For example, what could help identify if a given SPV array is working on a global maximum power point or a local maximum power point. Furthermore, the experimental results demonstrated that the model and methodology are useful in understanding what happens with SPV arrays in very complex shadow situations.

References

1.
Peralta Vera
,
A. A.
,
del Carpio Beltrán
,
H. J.
,
Zúñiga Torres
,
J. C.
,
Milón Guzmán
,
J. J.
, and
Braga
,
S. L.
,
August 2019
, “
, Experimental Study of a Photovoltaic Direct Current Water Pumping System for Irrigation in Rural-Isolated Region of Arequipa, Peru
,”
ASME J. Sol. Energy Eng.
,
141
(
4
), p.
041012
.
2.
Yang
,
J.
,
Li
,
X.
,
Peng
,
W.
,
Wagner
,
F.
, and
Mauzerall
,
D. L.
,
2018
, “
Climate, Air Quality and Human Health Benefits of Various Solar Photovoltaic Deployment Scenarios in China in 2030
,”
Environ. Res. Lett.
,
13
(
6
), p.
064002
.
3.
Pilakkat
,
D.
, and
Kanthalakshmi
,
S.
,
2019
, “
An Improved P&O Algorithm Integrated With Artificial Bee Colony for Photovoltaic Systems Under Partial Shading Conditions
,”
Sol. Energy
,
178
, pp.
37
47
.
4.
Mohammad
,
N.
, and
Karim
,
T.
,
February 2013
, “
Design and Implementation of Hybrid Automatic Solar-Tracking System
,”
ASME J. Sol. Energy Eng.
,
135
(
1
), p.
011013
.
5.
Jäger-Waldau
,
A.
,
Donoso
,
J.
,
Detollenaere
,
A.
,
Wetter
,
J.
, and
Masson
,
G.
,
2021
, “
Snapshot of Global PV Markets 2021
,”
Report IEA-PVPS T1-39:2021
, April. https://iea-pvps.org/wp-content/uploads/2021/04/IEA_PVPS_Snapshot_2021-V3.pdf.
6.
REN21
,
2021
, Renewables 2021 Global Status Report, REN21 Secretariat, Paris. https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf.
7.
Jaeger-Waldau
,
A.
,
2019
, PV Status Report 2019, EUR 29938 EN, Publications Office of the European Union, Luxembourg, JRC118058. https://doi:10.2760/329862.
8.
IEA
,
2019
, Snapshot of Global PV Markets 2019, IEA-PVPS. (n.d.) Report IEA-PVPS T1-3:2019, April. https://iea-pvps.org/snapshot-reports/snapshot-2019/.
9.
Jäger-Waldau
,
A.
,
Donoso
,
J.
,
Detollenaere
,
A.
,
Wetter
,
J.
, and
Masson
,
G.
,
2020
, Snapshot of Global PV Markets 2020, Report IEA-PVPS T1-37:2020, April. https://iea-pvps.org/wp-content/uploads/2020/04/IEA_PVPS_Snapshot_2020.pdf.
10.
Trzmiel
,
G.
,
Głuchy
,
D.
, and
Kurz
,
D.
,
2020
, “
The Impact of Shading on the Exploitation of Photovoltaic Installations
,”
Renew. Energy
,
153
, pp.
480
498
.
11.
Nashih
,
S. K.
,
Fernandes
,
C. A. F.
,
Torres
,
J. P. N.
,
Gomes
,
J.
, and
Costa Branco
,
P. J.
,
August 2016
, “
Validation of a Simulation Model for Analysis of Shading Effects on Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
044503
.
12.
Decker
,
B.
, and
Jahn
,
U.
,
1997
, “
Performance of 170 Grid Connected PV Plants in Northern Germany—Analysis of Yields and Optimization Potentials
,”
Sol. Energy
,
59
(
4–6
), pp.
127
133
.
13.
Erge
,
T.
,
Hoffmann
,
V. U.
,
Kiefer
,
K.
,
Rössler
,
E.
,
Rindelhardt
,
U.
,
Teichmann
,
G.
,
Decker
,
B.
, et al
, 1998,
The German 1000-Roofs-Programme—A Resume of the 5 Years Pioneer Project for Small Grid-Connected PV Systems, Vienna, Austria, July 6–10
,
1998
, Vol.
III
, p.
2648
.
14.
Kurokawa
,
K.
,
Sugiyama
,
H.
,
Uchida
,
D.
,
Sakuta
,
K.
,
Sakamoto
,
K.
,
Ohshiro
,
T.
,
Matsuo
,
T.
, and
Katagiri
,
T.
,
1997
, “
Extended Performance Analysis of 70 PV Systems in Japanese Field Test Program
,”
Conference Record of Twenty-Sixth IEEE Photovoltaic Specialists Conference—1997
,
Anaheim, CA
,
Sept. 29–Oct. 3
, pp.
1249
1252
.
15.
Sah
,
C.
,
Noyce
,
R. N.
, and
Shockley
,
W.
,
Sept. 1957
, “
Carrier Generation and Recombination in P–N Junctions and P–N Junction Characteristics
,”
Proc. IRE
,
45
(
9
), pp.
1228
1243
.
16.
Eke
,
R.
, and
Demircan
,
C.
,
2015
, “
Shading Effect on the Energy Rating of Two Identical PV Systems on a Building Façade
,”
Sol. Energy
,
122
, pp.
48
57
.
17.
Fadhel
,
S.
,
Delpha
,
C.
,
Diallo
,
D.
,
Bahri
,
I.
,
Migan
,
A.
,
Trabelsi
,
M.
, and
Mimouni
,
M. F.
,
2019
, “
PV Shading Fault Detection and Classification Based on IV Curve Using Principal Component Analysis: Application to Isolated PV System
,”
Sol. Energy
,
179
, pp.
1
10
.
18.
ur Rehman
,
N.
,
June 2021
, “
Optimal Layout for Façade-Mounted Solar Photovoltaic Arrays in Constrained Fields
,”
ASME J. Sol. Energy Eng.
,
143
(
3
), p.
031004
.
19.
Das
,
S. K.
,
Verma
,
D.
,
Nema
,
S.
, and
Nema
,
R. K.
,
2017
, “
Shading Mitigation Techniques: State-of-the-Art in Photovoltaic Applications
,”
Renew. Sustain. Energy Rev.
,
78
, pp.
369
390
.
20.
Maghami
,
M. R.
,
Hizam
,
H.
,
Gomes
,
C.
,
Radzi
,
M. A.
,
Rezadad
,
M. I.
, and
Hajighorbani
,
S.
,
2016
, “
Power Loss Due to Soiling on Solar Panel: A Review
,”
Renew. Sustain. Energy Rev.
,
59
, pp.
1307
1316
.
21.
Weinstock
,
D.
, and
Appelbaum
,
J.
,
August 2004
, “
Optimal Solar Field Design of Stationary Collectors
,”
ASME J. Sol. Energy Eng.
,
126
(
3
), pp.
898
905
.
22.
Parlak
,
,
2014
, “
PV Array Reconfiguration Method Under Partial Shading Conditions
,”
Int. J. Electr. Power Energy Syst.
,
63
, pp.
713
721
.
23.
Belhachat
,
F.
, and
Larbes
,
C.
,
2015
, “
Modeling, Analysis and Comparison of Solar Photovoltaic Array Configurations Under Partial Shading Conditions
,”
Sol. Energy
,
120
, pp.
399
418
.
24.
Woyte
,
A.
,
Nijs
,
J.
, and
Belmans
,
R.
,
2003
, “
Partial Shadowing of Photovoltaic Arrays With Different System Configurations: Literature Review and Field Test Results
,”
Sol. Energy
,
74
(
3
), pp.
217
233
.
25.
Sinapis
,
K.
,
Tzikas
,
C.
,
Litjens
,
G.
,
van den Donker
,
M.
,
Folkerts
,
W.
,
van Sark
,
W. G. J. H. M.
, and
Smets
,
A.
,
2016
, “
A Comprehensive Study on Partial Shading Response of c-Si Modules and Yield Modeling of String Inverter and Module Level Power Electronics
,”
Sol. Energy
,
135
, pp.
731
741
.
26.
PVsyst SA—Route de la Maison-Carrée 30-1242 Satigny-Switzerland
. PVsyst 7. https://www.pvsyst.com/wp-content/uploads/2020/10/PVsyst_Tutorials_V7_Grid_Connected.pdf.
27.
V.S. GmbH
.
PV*SOL—PV*SOL® Basic Design and Simulation of Photovoltaic Systems Manual
. https://www.valentin-software.com/wp-content/uploads/legacy-downloads/handbuecher/en/manual-eng.pdf.
28.
Schumacher
,
J.
,
2021
, INSEL—Integrated Simulation Environment Language—Photovoltaics, Simulation of Renewable Energy Systems. https://www.insel.eu/files/public/inselTutorial_en.pdf.
29.
Freeman
,
J.
,
Blair
,
N.
,
Guittet
,
D.
,
Mirletz
,
B.
,
Prilliman
,
M.
,
Janzou
,
S.
,
Gilman
,
P.
,
Neises
,
T.
, and
Boyd
,
M. S.
,
2020
,
System Advisor Model—SAM, National Renewable Energy Laboratory—NREL
. https://sam.nrel.gov/images/webinar_files/sam-webinars-2020-intro-to-sam.pdf.
30.
Robledo
,
J.
,
Leloux
,
J.
,
Lorenzo
,
E.
, and
Gueymard
,
C. A.
,
2019
, “
From Video Games to Solar Energy: 3D Shading Simulation for PV Using GPU
,”
Sol. Energy
,
193
, pp.
962
980
.
31.
Saint-Drenan
,
Y.-M.
, and
Barbier
,
T.
,
2019
, “
Data-Analysis and Modelling of the Effect of Inter-Row Shading on the Power Production of Photovoltaic Plants
,”
Sol. Energy
,
184
, pp.
127
147
.
32.
Chepp
,
E. D.
,
Gasparin
,
F. P.
, and
Krenzinger
,
A.
,
2021
, “
Accuracy Investigation in the Modeling of Partially Shaded Photovoltaic Systems
,”
Sol. Energy
,
223
, pp.
182
192
.
33.
Femia
,
N.
,
Lisi
,
G.
,
Petrone
,
G.
,
Spagnuolo
,
G.
, and
Vitelli
,
M.
,
July 2008
, “
Distributed Maximum Power Point Tracking of Photovoltaic Arrays: Novel Approach and System Analysis
,”
IEEE Trans. Ind. Electron.
,
55
(
7
), pp.
2610
2621
.
34.
Martínez-Moreno
,
F.
,
Muñoz
,
J.
, and
Lorenzo
,
E.
,
2010
, “
Experimental Model to Estimate Shading Losses on PV Arrays
,”
Sol. Energy Mater. Sol. Cells
,
94
(
12
), pp.
2298
2303
.
35.
Deline
,
C.
,
Dobos
,
A.
,
Janzou
,
S.
,
Meydbray
,
J.
, and
Donovan
,
M.
,
2013
, “
A Simplified Model of Uniform Shading in Large Photovoltaic Arrays
,”
Sol. Energy
,
96
, pp.
274
282
.
36.
Melo
,
E. G.
,
Almeida
,
M. P.
,
Zilles
,
R.
, and
Grimoni
,
J. A. B.
,
2013
, “
Using a Shading Matrix to Estimate the Shading Factor and the Irradiation in a Three-Dimensional Model of a Receiving Surface in an Urban Environment
,”
Sol. Energy
,
92
, pp.
15
25
.
37.
MacAlpine
,
S. M.
,
Erickson
,
R. W.
, and
Brandemuehl
,
M. J.
,
June 2013
, “
Characterization of Power Optimizer Potential to Increase Energy Capture in Photovoltaic Systems Operating Under Nonuniform Conditions
,”
IEEE Trans. Power Electron.
,
28
(
6
), pp.
2936
2945
.
38.
MacAlpine
,
S.
, and
Deline
,
C.
,
2015
, “
Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance
,”
2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC)
,
New Orleans, LA
,
June 14–19
, pp.
1
6
.
39.
MacAlpine
,
S.
,
Deline
,
C.
, and
Dobos
,
A.
,
2017
, “
Measured and Estimated Performance of a Fleet of Shaded Photovoltaic Systems With String and Module-Level Inverters
,”
Prog. Photovolt. Res. Appl.
,
25
(
8
), pp.
714
726
.
40.
Zomer
,
C.
, and
Rüther
,
R.
,
2017
, “
Simplified Method for Shading-Loss Analysis in BIPV Systems—Part 1: Theoretical Study
,”
Energy Build.
,
141
, pp.
69
82
.
41.
Lyden
,
S.
, and
Haque
,
M. E.
,
2019
, “
Modelling, Parameter Estimation and Assessment of Partial Shading Conditions of Photovoltaic Modules
,”
J. Mod. Power Syst. Clean Energy
,
7
(
1
), pp.
55
64
.
42.
Kermadi
,
M.
,
Chin
,
V. J.
,
Mekhilef
,
S.
, and
Salam
,
Z.
,
2020
, “
A Fast and Accurate Generalized Analytical Approach for PV Arrays Modeling Under Partial Shading Conditions
,”
Sol. Energy
,
208
, pp.
753
765
.
43.
de Jesus dos Santos Rodrigues
,
M.
,
Torres
,
P. F.
,
Barros Galhardo
,
M. A.
,
Chase
,
O. A.
,
Monteiro
,
W. L.
,
de Arimatéia Alves Vieira Filho
,
J.
,
Mares
,
F. M.
, and
Macêdo
,
W. N.
,
2021
, “
A New Methodology for the Assessing of Power Losses in Partially Shaded SPV Arrays
,”
Energy
,
232
, p.
120938
.
44.
Mai
,
T. D.
,
De Breucker
,
S.
,
Baert
,
K.
, and
Driesen
,
J.
,
2017
, “
Reconfigurable Emulator for Photovoltaic Modules Under Static Partial Shading Conditions
,”
Sol. Energy
,
141
, pp.
256
265
.
45.
Boukenoui
,
R.
,
Salhi
,
H.
,
Bradai
,
R.
, and
Mellit
,
A.
,
2016
, “
A New Intelligent MPPT Method for Stand-Alone Photovoltaic Systems Operating Under Fast Transient Variations of Shading Patterns
,”
Sol. Energy
,
124
, pp.
124
142
.
46.
Mirza
,
A. F.
,
Ling
,
Q.
,
Javed
,
M. Y.
, and
Mansoor
,
M.
,
2019
, “
Novel MPPT Techniques for Photovoltaic Systems Under Uniform Irradiance and Partial Shading
,”
Sol. Energy
,
184
, pp.
628
648
.
47.
Mao
,
M.
,
Zhang
,
L.
,
Huang
,
H.
,
Chong
,
B.
, and
Zhou
,
L.
,
2020
, “
Maximum Power Exploitation for Grid-Connected PV System Under Fast-Varying Solar Irradiation Levels With Modified Salp Swarm Algorithm
,”
J. Clean. Prod.
,
268
, p.
122158
.
48.
Pillai
,
D. S.
,
Ram
,
J. P.
,
Shabunko
,
V.
, and
Kim
,
Y.-J.
,
2021
, “
A New Shade Dispersion Technique Compatible for Symmetrical and Unsymmetrical Photovoltaic (PV) Arrays
,”
Energy
,
225
, p.
120241
.
49.
Ishaque
,
K.
,
Salam
,
Z.
, and
Syafaruddin
,
2011
, “
A Comprehensive MATLAB Simulink PV System Simulator With Partial Shading Capability Based on Two-Diode Model
,”
Sol. Energy
,
85
(
9
), pp.
2217
2227
.
50.
Chellaswamy
,
C.
, and
Ramesh
,
R.
,
2016
, “
An Optimal Parameter Extraction and Crack Identification Method for Solar Photovoltaic Modules
,”
ARPN J. Eng. Appl. Sci.
,
11
(
24
), pp.
14468
14481
. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_1216_5563.pdf.
51.
Pavan Kumar
,
A. V.
,
Parimi
,
A. M.
, and
Uma Rao
,
K.
,
2014
, “
Performance Analysis of a Two-Diode Model of PV Cell for PV Based Generation in MATLAB
,”
2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies
, pp.
68
72
.
52.
Sera
,
D.
,
Teodorescu
,
R.
, and
Rodriguez
,
P.
,
2008
, “
Photovoltaic Module Diagnostics by Series Resistance Monitoring and Temperature and Rated Power Estimation
,”
2008 34th Annual Conference on IEEE Industrial Electronics
,
Orlando, FL
,
Nov. 10–13
, pp.
2195
2199
.
53.
Mahammed
,
I. H.
,
Arab
,
A. H.
,
Berrah
,
S.
,
Bakelli
,
Y.
,
Khennene
,
M.
,
Oudjana
,
S. H.
,
Fezzani
,
A.
, and
Zaghba
,
L.
,
2017
, “
Outdoor Study of Partial Shading Effects on Different PV Modules Technologies
,”
4th International Conference on Power and Energy Systems Engineering (CPESE)
,
Berlin, Germany
,
Sept. 25–29
,
Vol. 141
, pp.
81
85
.
54.
da S. Brito
,
E. M.
,
da S. Antônio
,
A.
,
Cupertino
,
A. F.
, and
Pereira
,
H. A.
,
2014
, “
Characterization of Solar Panel Using Capacitive Load
,”
2014 11th IEEE IAS International Conference on Industry Applications
,
Juiz de Fora, Brazil
,
Dec. 7–10
, pp.
1
7
.
55.
Muñoz
,
J.
, and
Lorenzo
,
E.
,
2006
, “
Capacitive Load Based on IGBTs for On-Site Characterization of PV Arrays
,”
Sol. Energy
,
80
(
11
), pp.
1489
1497
.
56.
Dadjé
,
A.
,
Djongyang
,
N.
, and
Tchinda
,
R.
,
2017
, “
Electrical Power Losses in a Photovoltaic Solar Cell Operating Under Partial Shading Conditions
,”
J. Power Energy Eng.
,
5
(
10
), pp.
19
33
.
57.
Mahmoud
,
Y.
,
Xiao
,
W.
, and
Zeineldin
,
H. H.
,
2012
, “
A Simple Approach to Modeling and Simulation of Photovoltaic Modules
,”
IEEE Trans. Sustain. Energy
,
3
(
1
), pp.
185
186
.
58.
Chitti Babu
,
B.
,
Gurjar
,
S.
, and
Cermak
,
T.
,
2016
, “
Investigation on the Accurate Parameter Estimation of Photovoltaic (PV) Module Based on Simplified Two-Diode Model
,”
World J. Eng.
,
13
(
3
), pp.
225
233
.
You do not currently have access to this content.