Abstract

A performance assessment of advanced sCO2 Brayton cycles integrated with a concentrated solar power and waste heat recovery systems was conducted. Five advanced sCO2 Brayton cycles are examined for the bottoming cycle: dual heater, dual expansion, cascade, partial recuperation, and Kimzey cycles. This study reveals that the dual heater and dual expansion cycles have the best performance among the advanced sCO2 Brayton cycles considered. The findings reveal that the highest cycle efficiency is for the dual heater and dual expansion cycles (29.18%) followed by the Kimzey cycle (27.73%), then the cascade cycle (26.29%). Consequently, the least cycle efficiency is for the partial recuperation cycle (25%). Furthermore, the highest net power takes place in the dual heater and dual expansion cycles. Finally, the findings demonstrate that increasing the pressure ratio of advanced sCO2 Brayton cycles, within the range considered, results in a reduction of the cycle efficiency.

References

1.
Owusu
,
P. A.
, and
Asumadu-Sarkodie
,
S.
,
2016
, “
A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation
,”
Cogent Eng.
,
3
(
1
), p.
1167990
.
2.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
(
C
), pp.
152
183
.
3.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Doctoral dissertation
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
4.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
5.
Enríquez
,
L. C.
,
Muñoz-Antón
,
J.
, and
Peñalosa
,
J. M. M. V.
,
2017
, “
Thermodynamic Optimization of Supercritical CO2 Brayton Power Cycles Coupled to Line-Focusing Solar Fields
,”
ASME J. Sol. Energy Eng.
,
139
(
6
), p.
061005
.
6.
Alsagri
,
A. S.
,
Chiasson
,
A.
, and
Gadalla
,
M.
,
2019
, “
Viability Assessment of a Concentrated Solar Power Tower With a Supercritical CO2 Brayton Cycle Power Plant
,”
ASME J. Sol. Energy Eng.
,
141
(
5
), p.
051006
.
7.
Turchi
,
C. S.
,
Ma
,
Z.
, and
Dyreby
,
J.
,
2009
, “
Supercritical CO2 for Application in Concentrating Solar Power Systems
,”
Proceedings of SCCO2 Power Cycle Symposium
,
RPI
,
Troy, NY
,
Apr. 29–30
, pp.
29
30
, http://homepages.rpi.edu/∼podowm/CMR/symposium/symposium.html
8.
Chapman
,
D. J.
, and
Arias
,
D.
,
2009
, “
An Assessment of the Supercritical Carbon Dioxide Cycle for Use in a Solar Parabolic Trough Power Plant
,”
Proceedings of SCCO2 Power Cycle Symposium 2009
,
Troy, NY
,
Apr. 29–30
, pp.
53
59
. http://homepages.rpi.edu/∼podowm/CMR/symposium/symposium.html
9.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Beath
,
A.
,
McNaughton
,
R.
, and
Stein
,
W.
,
2015
, “
Effect of Pressure Drop and Reheating on Thermal and Exergetic Performance of Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Central Receiver
,”
ASME J. Sol. Energy Eng.
,
137
(
5
), p.
051012
.
10.
Seidel
,
W.
,
2010
, “
Model Development and Annual Simulation of the Supercritical Carbon Dioxide Brayton Cycle for Concentrating Solar Power Applications
,”
Master dissertation
,
University of Wisconsin—Madison
,
WI
.
11.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
12.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2016
, “
Optimization of a Recompression Supercritical Carbon Dioxide Cycle for an Innovative Central Receiver Solar Power Plant
,”
Energy
,
112
, pp.
17
27
.
13.
Binotti
,
M.
,
Astolfi
,
M.
,
Campanari
,
S.
,
Manzolini
,
G.
, and
Silva
,
P.
,
2017
, “
Preliminary Assessment of sCO2 Cycles for Power Generation in CSP Solar Tower Plants
,”
Appl. Energy
,
204
, pp.
1007
1017
.
14.
Neises
,
T.
, and
Turchi
,
C.
,
2014
, “
A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations With an Emphasis on CSP Applications
,”
Energy Procedia
,
49
, pp.
1187
1196
.
15.
Zhu
,
H. H.
,
Wang
,
K.
, and
He
,
Y. L.
,
2017
, “
Thermodynamic Analysis and Comparison for Different Direct-Heated Supercritical CO2 Brayton Cycles Integrated Into a Solar Thermal Power Tower System
,”
Energy
,
140
, pp.
144
157
.
16.
Padilla
,
R. V.
,
Soo Too
,
Y. C.
,
Benito
,
R.
, and
Stein
,
W.
,
2015
, “
Exergetic Analysis of Supercritical CO2 Brayton Cycles Integrated With Solar Central Receivers
,”
Appl. Energy
,
148
, pp.
348
365
.
17.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
18.
Nobles-Lookingbill
,
D.
,
Sahm
,
A.
,
Hurt
,
R.
, and
Boehm
,
R.
,
2020
, “
Design, Fabrication, and Partial Characterization of a Solar Receiver and Air-Cooled Heat Exchanger for a Concentrated Solar Power Supercritical CO2 Testbed
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
064501
.
19.
Al-Sulaiman
,
F. A.
, and
Atif
,
M.
,
2015
, “
Performance Comparison of Different Supercritical Carbon Dioxide Brayton Cycles Integrated With a Solar Power Tower
,”
Energy
,
82
, pp.
61
71
.
20.
Ortega
,
J. I.
,
Burgaleta
,
J. I.
, and
Téllez
,
F. M.
,
2008
, “
Central Receiver System Solar Power Plant Using Molten Salt as Heat Transfer Fluid
,”
ASME J. Sol. Energy Eng.
,
130
(
2
), p.
024501
.
21.
Kalogirou
,
S. A.
,
2013
,
Solar Energy Engineering: Processes and Systems
,
Academic Press
,
New York
.
22.
European Commission and Directorate-General for Research and Innovation
,
2005
, https://op.europa.eu/s/v6cK, Accessed May 15, 2022.
23.
Alshahrani
,
S.
, and
Engeda
,
A.
,
2020
, “
Performance Analysis of a Solar–Biogas Hybrid Micro Gas Turbine for Power Generation
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021007
.
24.
Frank
,
J. B.
,
2000
, “
GE Gas Turbine Performance Characteristics
,” General Electric Report GER-3567H, GE Power Systems, Schenectady, New York, http://site.geenergy.com/prod_serv/products/tech_docs/en/downloads/ger3567h.pdf, Accessed May 12, 2022.
25.
Brun
,
K.
,
Friedman
,
P.
, and
Dennis
,
R.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
, 1st ed.,
Woodhead publishing, Elsevier Inc.
,
Witney, Oxford, UK
.
26.
Fuqiang
,
W.
,
Ziming
,
C.
,
Jianyu
,
T.
,
Yuan
,
Y.
,
Yong
,
S.
, and
Linhua
,
L.
,
2017
, “
Progress in Concentrated Solar Power Technology With Parabolic Trough Collector System: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
79
, pp.
1314
1328
.
27.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles For Power Production.
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.
28.
Vesely
,
L.
,
Dostal
,
V.
, and
Entler
,
S.
,
2017
, “
Study of the Cooling Systems With S-CO2 for the DEMO Fusion Power Reactor
,”
Fusion Eng. Des.
,
124
, pp.
244
247
.
29.
Kacludis
,
A.
,
Lyons
,
S.
,
Nadav
,
D.
, and
Zdankiewicz
,
E.
,
2012
, “
Waste Heat to Power (WH2P) Applications Using a Supercritical CO2-Based Power Cycle
,”
Power-Gen Int.
,
2012
, pp.
11
13
.
30.
Ladislav
,
V.
,
Vaclav
,
D.
,
Ondrej
,
B.
, and
Vaclav
,
N.
,
2016
, “
Pinch Point Analysis of Heat Exchangers for Supercritical Carbon Dioxide With Gaseous Admixtures in CCS Systems
,”
Energy Procedia
,
86
, pp.
489
499
.
31.
Kimzey
,
G.
,
2012
,
Development of a Brayton Bottoming Cycle Using Supercritical Carbon Dioxide as the Working Fluid
, Electric Power Research Institute, University Turbine Systems Research Program, Gas Turbine Industrial Fellowship,
Palo Alto, CA
.
32.
Vesely
,
L.
,
Syblik
,
J.
,
Entler
,
S.
,
Stepanek
,
J.
,
Zacha
,
P.
, and
Dostal
,
V.
,
2020
, “
Optimization of Supercritical CO2 Power Conversion System With an Integrated Energy Storage for the Pulsed DEMO
,”
IEEE Trans. Plasma Sci.
,
48
(
6
), pp.
1715
1720
.
33.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
S.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2018
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012003
.
34.
Vesely
,
L.
,
Thangavel
,
P.
,
Gopinathan
,
S.
,
Frybort
,
O.
,
Subbaraman
,
G.
, and
Kapat
,
J.
,
2021,
, “
Greening a Cement Plant Using sCO2 Power Cycle
,”
4th European sCO2 Conference for Energy Systems, Online Conference
,
Prague, Czech Republic
,
Mar. 22–26
.
35.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0, Natl. Std. Ref. Data Series (NIST NSRDS),” National Institute of Standards and Technology, Gaithersburg, MD.
36.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.
37.
Cengel
,
Y. A.
,
Boles
,
M. A.
, and
Kanoğlu
,
M.
,
2011
,
Thermodynamics: An Engineering Approach
,
Vol. 5
, p.
445
.
McGraw-Hill
,
New York
.
You do not currently have access to this content.