Abstract

To improve the efficiency of a Savonius vertical axis wind turbine, this investigation proposes the use of expandable blades instead of rigid blades. The expandable blades have the ability to change their form during the turbine rotation. The expansion of the advancing blade increases the positive torque, and the contraction of the returning blade decreases the negative torque, which boosts the turbine efficiency. Two-dimensional numerical simulations have been carried out using the commercial code ansys fluent 18.0 with a deformable mesh to fit the changing shape of the blades during the rotation cycle. The paper involves the effect of the expansion amplitude as well as the effect of the blades gap and overlap ratios on the turbine overall performance. The numerical model is validated by comparison of predictions with experimental results. Results show that the torque coefficient is improved by about 24% for the lowest expansion amplitude and by about 90.6% for the highest expansion amplitude. A further improvement of 7% is recorded for an expandable turbine with a gap ratio of 1/20 the turbine diameter.

References

1.
Jon
,
B. S.
,
2016
, “
Linking EU Climate and Energy Policies: Policy-Making, Implementation and Reform
,”
Int. Environ. Agreements
,
16
(
4
), pp.
509
523
.
2.
Oberthur
,
S.
, and
Roche
,
K. C.
,
2008
, “
EU Leadership in International Climate Policy: Achievements and Challenges
,”
Int. Spect.
,
43
(
3
), pp.
35
50
.
3.
Karimian
,
S. M.
, and
Abdolahifar
,
A.
,
2020
, “
Performance Investigation of a New Darrieus Vertical Axis Wind Turbine
,”
Energy
,
191
(
1
), p.
116551
.
4.
Naseem
,
A.
,
Uddin
,
E.
,
Ali
,
Z.
,
Aslam
,
J.
,
Shah
,
S. R.
, and
Sajid
,
M.
,
2020
, “
Effect of Vortices on Power Output of Vertical Axis Wind Turbine (VAWT)
,”
Sustainable Energy Technol. Assess.
,
37
, p.
100586
.
5.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2020
, “
Effect of Aspect Ratio on Vertical Axis Wind Turbine Wakes
,”
J. Fluid Mech.
,
889
(
1
), pp.
1
12
.
6.
Arfaoui
,
B.
,
Bouzaher
,
M. T.
,
Guerira
,
B.
, and
Bensaci
,
C.
,
2020
, “
On the Performance of Swing Arm Flapping Turbines
,”
ASME J. Sol. Energy Eng.
,
143
(
1
), p.
011013
.
7.
Wong
,
K.
,
Chong
,
W.
,
Sukiman
,
N.
,
Shiah
,
Y.
,
Poh
,
S.
,
Sopian
,
K.
, and
Wang
,
W.
,
2018
, “
Experimental and Simulation Investigation Into the Effects of a Flat Plate Deflector on Vertical Axis Wind Turbine
,”
Energy Convers. Manage.
,
160
(
1
), pp.
109
125
.
8.
Masdari
,
M.
,
Tahani
,
M.
,
Naderi
,
M.
, and
Babayan
,
N.
,
2019
, “
Optimization of Airfoil Based Savonius Wind Turbine Using Coupled Discrete Vortex Method and Salp Swarm Algorithm
,”
J. Cleaner Prod.
,
222
(
2
), pp.
47
56
.
9.
Modi
,
V.
, and
Fernando
,
M.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
10.
Alom
,
N.
, and
Saha
,
U.
,
2018
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
11.
Basumatary
,
M.
,
Biswas
,
A.
, and
Misra
,
R.
,
2018
, “
CFD Analysis of an Innovative Combined Lift and Drag (CLD) Based Modified Savonius Water Turbine
,”
Energy Convers. Manage.
,
174
(
8
), pp.
72
87
.
12.
Jaohindy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renewable Energy
,
55
(
12
), pp.
286
295
.
13.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
.
14.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
2011
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance
,”
ASME J. Sol. Energy Eng.
,
134
(
1
), p.
011016
.
15.
Emmanuel
,
B.
, and
Jun
,
W.
,
2011
, “
Numerical Study of a Six-Bladed Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
044503
.
16.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
(
12
), pp.
722
734
.
17.
Sharma
,
S.
, and
Sharma
,
R.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades—A CFD Investigation
,”
Energy Convers. Manage.
,
127
(
8
), pp.
43
54
.
18.
Fatahian
,
H.
,
Salarian
,
H.
,
Khaleghinia
,
J.
, and
Fatahian
,
E.
,
2018
, “
Improving the Efficiency of a Savonius Vertical Axis Wind Turbine Using an Optimum Parameters
,”
Comput. Res. Prog. Appl. Sci. Eng.
,
4
(
2
), pp.
27
32
.
19.
Tian
,
W.
,
Song
,
B.
,
VanZwieten
,
J.
, and
Pyakurel
,
P.
,
2015
, “
Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine With Novel Blade Shapes
,”
Energies
,
8
(
8
), pp.
7915
7929
.
20.
Michele
,
M.
,
Mauro
,
V.
, and
Asfaw
,
B.
,
2017
, “
A Novel Geometry for Vertical Axis Wind Turbine Based on the Savonius Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
061202
.
21.
Mohamed
,
M. H.
,
Janiga
,
G.
,
Pap
,
E.
, and
Thévenin
,
D.
,
2011
, “
Optimal Blade Shape of a Modified Savonius Turbine Using an Obstacle Shielding the Returning Blade
,”
Energy Convers. Manage.
,
52
(
1
), pp.
236
242
.
22.
Ogawa
,
T.
, and
Yoshida
,
H.
,
1986
, “
The Effects of a Deflecting Plate and Rotor End Plates on Performances of Savonius-Type Wind Turbine
,”
Bull. JSME
,
29
(
253
), pp.
2115
2121
.
23.
Golecha
,
K.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2011
, “
Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine
,”
Appl. Energy
,
88
(
9
), pp.
3207
3217
.
24.
Mohd
,
B. S.
,
Noorfazreena
,
M. K.
, and
Zulfaa
,
M. K.
,
2020
, “
The Effects of Deflector Longitudinal Position and Height on the Power Performance of a Conventional Savonius Turbine
,”
Energy Convers. Manage.
,
226
(
11
), pp.
113
584
.
25.
Shaughnessy
,
B.
, and
Probert
,
S.
,
1992
, “
Partially-Blocked Savonius Rotor
,”
Appl. Energy
,
43
(
4
), pp.
239
249
.
26.
Hossein
,
A.
,
Mohammad
,
H. J.
, and
Roghayeh
,
G.
,
2020
, “
CFD-Based Improvement of Savonius Type Hydrokinetic Turbine Using Optimized Barrier at the Low-Speed Flows
,”
Ocean Eng.
,
202
(
1
), pp.
107
178
.
27.
Anuj
,
K.
,
Saini
,
R. P.
,
Gaurav
,
S.
, and
Gaurav
,
D.
,
2020
, “
Effect of Number of Stages on the Performance Characteristics of Modified Savonius Hydrokinetic Turbine
,”
Ocean Eng.
,
217
(
3
), pp.
108
090
.
28.
Bouzaher
,
M. T.
,
Guerira
,
B.
, and
Hadid
,
M.
,
2017
, “
Performance Analysis of a Vertical Axis Tidal Turbine With Flexible Blades
,”
J. Mar. Sci. Appl.
,
16
(
1
), pp.
73
80
.
29.
Bouzaher
,
M. T.
,
Hadid
,
M.
, and
Derfouf
,
S. E.
,
2017
, “
Flow Control for the Vertical Axis Wind Turbine by Means of Flapping Flexible Foils
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
2
), pp.
457
470
.
30.
Bouzaher
,
M. T.
, and
Hadid
,
M.
,
2017
, “
Numerical Investigation of a Vertical Axis Tidal Turbine With Deforming Blades
,”
Arab. J. Sci. Eng.
,
42
(
5
), pp.
2167
2178
.
31.
Krzysztof
,
S.
,
Damian
,
O.
,
Piotr
,
R.
, and
Emil
,
M.
,
2020
, “
Numerical Investigations of the Savonius Turbine With Deformable Blades
,”
Energies
,
13
(
14
), p.
3717
.
32.
Xiao
,
Q.
, and
Liao
,
W.
,
2010
, “
Numerical Investigation of Angle of Attack Profile on Propulsion Performance of an Oscillating Foil
,”
Comput. Fluids
,
39
(
8
), pp.
1366
1380
.
33.
Xiao
,
Q.
,
Liao
,
W.
,
Yang
,
S.
, and
Peng
,
Y.
,
2012
, “
How Motion Trajectory Affects Energy Extraction Performance of a Biomimic Energy Generator With an Oscillating Foil?
,”
Renewable Energy
,
37
(
1
), pp.
61
75
.
34.
Zhu
,
Q.
,
2007
, “
Numerical Simulation of a Flapping Foil With Chordwise or Spanwise Flexibility
,”
AIAA J.
,
45
(
10
), pp.
2448
2457
.
35.
Nakata
,
T.
, and
Liu
,
H.
,
2011
, “
Aerodynamic Performance of a Hovering Hawkmoth With Flexible Wings: A Computational Approach
,”
Proc. R. Soc. B: Biol. Sci.
,
279
(
1729
), pp.
722
731
.
36.
Rogowski
,
K.
, and
Maroński
,
R.
,
2015
, “
CFD Computation of the Savonius Rotor
,”
J.Theoret. Appl. Mech.
,
53
(
1
), pp.
37
45
.
37.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines
,”
Energy
,
180
(
5
), pp.
838
857
.
38.
Tan
,
J.
,
2017
, “
Simulation of Morphing Blades for Vertical Axis Wind Turbines
,”
Master’s thesis
,
Concordia University
,
Monreal, Quebec, Canada
.
39.
Kerikous
,
E.
, and
Thévenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Renewable Energy
,
134
(
11
), pp.
629
638
.
40.
Kacprzak
,
K.
, and
Sobczak
,
K.
,
2015
, “
Computational Assessment of the Influence of the Overlap Ratio on the Power Characteristics of a Classical Savonius Wind Turbine
,”
Open Eng.
,
5
(
1
), pp.
314
322
.
41.
Maître
,
T.
,
Amet
,
E.
, and
Pellone
,
C.
,
2013
, “
Modeling of the Flow in a Darrieus Water Turbine: Wall Grid Refinement Analysis and Comparison With Experiments
,”
Renewable Energy
,
51
(
9
), pp.
497
512
.
42.
Nimvari
,
M. E.
,
Fatahian
,
H.
, and
Fatahian
,
E.
,
2020
, “
Performance Improvement of a Savonius Vertical Axis Wind Turbine Using a Porous Deflector
,”
Energy Convers. Manage.
,
220
(
11
), p.
113062
.
43.
Sheldahl
,
R.
,
Blackwell
,
B.
, and
Feltz
,
L.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
You do not currently have access to this content.