Abstract

This paper presents a highly efficient image encryption-based Arnold's cat map (ACM) technique to reconfigure the photovoltaic (PV) array to enhance the output and mitigate the mismatch losses due to partial shading (PS). The proposed ACM technique concentrates on alleviating the power loss by effectively dispersing the shade over the entire PV array without modifying its electrical circuitry. The proposed reconfiguration technique is investigated and analyzed with conventional series–parallel and total-cross-tied configurations along with the recently reported chaotic Baker's map, odd–even, odd–even–prime pattern-based configurations. The proposed technique is examined for symmetrical 6 × 6 PV array and unsymmetrical 6 × 9 PV array under distinct nonuniform and uniform PS cases. To confirm the potency and superior performance of the proposed technique, the system has been extensively examined with nine performance parameters such as global maximum power, mismatch power, power loss, efficiency, fill factor, array yield, capacity factor, performance ratio, and the number of maximum power peaks. An experimental setup of a 4 × 4 array reconfiguration system prototype is developed and tested in a real-time environment to validate the effectiveness of the proposed technique over the existing ones. From the comprehensive investigation, it is regarded that the proposed technique offers consistently superior performance with the least percentage mismatch losses and maximum power enhancement of 48.8%, 31.03%, and 27.5% for various shading cases of 6 × 6 and 6 × 9 PV arrays.

References

1.
Liu
,
L.
, and
Liu
,
C.
,
2013
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
2.
Pathak
,
P. K.
,
Yadav
,
A. K.
, and
Alvi
,
P. A.
,
2020
, “
Advanced Solar MPPT Techniques Under Uniform and Non-Uniform Irradiance: A Comprehensive Review
,”
ASME J. Sol. Energy Eng.
,
142
(
4
), p.
040801
.
3.
El Iysaouy
,
L.
,
Lahbabi
,
M.
,
Baskys
,
A.
, and
Oumnad
,
A.
,
2020
, “
Performance Analysis of Partially Shaded Photovoltaic Array Using Magic Square View Configuration for Shade Dispersion
,”
ASME J. Sol. Energy Eng.
,
142
(
6
), p.
064502
.
4.
Ngoc
,
T. N.
,
Phung
,
Q. N.
,
Tung
,
L. N.
,
Sanseverino
,
E. R.
,
Romano
,
P.
, and
Viola
,
F.
,
2017
, “
Increasing Efficiency of Photovoltaic Systems Under Non-Homogeneous Solar Irradiation Using Improved Dynamic Programming Methods
,”
Sol. Energy
,
150
, pp.
325
334
.
5.
Mahmoud
,
Y.
, and
El-Saadany
,
E. F.
,
2017
, “
Enhanced Reconfiguration Method for Reducing Mismatch Losses in PV Systems
,”
IEEE J. Photovoltaics
,
7
(
6
), pp.
1746
1754
.
6.
Ajmal
,
A. M.
,
Ramachandaramurthy
,
V. K.
,
Naderipour
,
A.
, and
Ekanayake
,
J. B.
,
2021
, “
Comparative Analysis of Two-Step GA-Based PV Array Reconfiguration Technique and Other Reconfiguration Techniques
,”
Energy Convers. Manage.
,
230
, p.
113806
. j.enconman.2020.113806
7.
Rani
,
B. I.
,
Ilango
,
G. S.
, and
Nagamani
,
C.
,
2013
, “
Enhanced Power Generation From PV Array Under Partial Shading Conditions by Shade Dispersion Using Su Do Ku Configuration
,”
IEEE Trans. Sustain. Energy
,
4
(
3
), pp.
594
601
.
8.
Krishna
,
S. G.
, and
Moger
,
T.
,
2019
, “
Optimal SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Increase Power Output Under Non-Uniform Irradiance
,”
IEEE Trans. Energy Conv.
,
34
(
4
), pp.
1973
1984
.
9.
Sai Krishna
,
G.
, and
Moger
,
T.
,
2019
, “
Improved SuDoKu Reconfiguration Technique for Total-Cross-Tied PV Array to Enhance Maximum Power Under Partial Shading Conditions
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
333
348
.
10.
Tatabhatla
,
V. M. R.
,
Agarwal
,
A.
, and
Kanumuri
,
T.
,
2019
, “
Performance Enhancement by Shade Dispersion of Solar Photo-Voltaic Array Under Continuous Dynamic Partial Shading Conditions
,”
J. Cleaner Prod.
,
213
, pp.
462
479
.
11.
Tatabhatla
,
V. M. R.
,
Agarwal
,
A.
, and
Kanumuri
,
T.
,
2021
, “
Performance Improvement by Mitigating the Effects of Moving Cloud Conditions
,”
IEEE Trans. Power Electron.
,
36
(
4
), pp.
4214
4223
.
12.
Horoufiany
,
M.
, and
Ghandehari
,
R.
,
2018
, “
Optimization of the Sudoku Based Reconfiguration Technique for PV Arrays Power Enhancement Under Mutual Shading Conditions
,”
Sol. Energy
,
159
, pp.
1037
1046
.
13.
Horoufiany
,
M.
, and
Ghandhari
,
R.
,
2018
, “
A New Photovoltaic Arrays Fixed Reconfiguration Method for Reducing Effects of One- and Two-Sided Mutual Shading
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
031013
.
14.
Venkateswari
,
R.
, and
Rajasekar
,
N.
,
2020
, “
Power Enhancement of PV System Via Physical Array Reconfiguration Based Lo Shu Technique
,”
Energy Conv. Manag.
,
215
, p.
112885
.
15.
Meerimatha
,
G.
, and
Rao
,
B. L.
,
2020
, “
Novel Reconfiguration Approach to Reduce Line Losses of the Photovoltaic Array Under Various Shading Conditions
,”
Energy
,
196
, p.
117120
.
16.
Sagar
,
G.
,
Pathak
,
D.
,
Gaur
,
P.
, and
Jain
,
V.
,
2020
, “
A Su Do Ku Puzzle Based Shade Dispersion for Maximum Power Enhancement of Partially Shaded Hybrid Bridge-Link-Total-Cross-Tied PV Array
,”
Sol. Energy
,
204
, pp.
161
180
.
17.
Reddy
,
S. S.
, and
Yammani
,
C.
,
2020
, “
A Novel Magic-Square Puzzle Based One-Time PV Reconfiguration Technique to Mitigate Mismatch Power Loss Under Various Partial Shading Conditions
,”
Optik
,
222
, p.
165289
.
18.
Sai Krishna
,
G.
, and
Moger
,
T.
,
2019
, “
Reconfiguration Strategies for Reducing Partial Shading Effects in Photovoltaic Arrays: State of the Art
,”
Sol. Energy
,
182
, pp.
429
452
.
19.
Pillai
,
D. S.
,
Rajasekar
,
N.
,
Ram
,
J. P.
, and
Chinnaiyan
,
V. K.
,
2018
, “
Design and Testing of Two Phase Array Reconfiguration Procedure for Maximizing Power in Solar PV Systems Under Partial Shade Conditions (PSC)
,”
Energy Convers. Manage.
,
178
, pp.
92
110
.
20.
Madhanmohan
,
V. P.
,
Nandakumar
,
M.
, and
Saleem
,
A.
,
2020
, “
Enhanced Performance of Partially Shaded Photovoltaic Arrays Using Diagonally Dispersed Total Cross Tied Configuration
,”
Energy Sources Part A
, pp.
1
19
.
21.
Pillai
,
D. S.
,
Ram
,
J. P.
,
Nihanth
,
M. S. S.
, and
Rajasekar
,
N.
,
2018
, “
A Simple, Sensorless and Fixed Reconfiguration Scheme for Maximum Power Enhancement in PV Systems
,”
Energy Convers. Manage.
,
172
, pp.
402
417
.
22.
Tatabhatla
,
V. M. R.
,
Agarwal
,
A.
, and
Kanumuri
,
T.
,
2019
, “
Improved Power Generation by Dispersing the Uniform and Non-Uniform Partial Shades in Solar Photovoltaic Array
,”
Energy Convers. Manage.
,
197
, p.
111825
.
23.
Tatabhatla
,
V. M. R.
,
Agarwal
,
A.
, and
Kanumuri
,
T.
,
2021
, “
A Chaos Map Based Reconfiguration of Solar Array to Mitigate the Effects of Partial Shading
,”
IEEE Trans. Energy Conv.
, pp.
1
1
.
24.
Nasiruddin
,
I.
,
Khatoon
,
S.
,
Jalil
,
M. F.
, and
Bansal
,
R. C.
,
2019
, “
Shade Diffusion of Partial Shaded PV Array by Using Odd–Even Structure
,”
Sol. Energy
,
181
, pp.
519
529
.
25.
Reddy
,
S. S.
, and
Yammani
,
C.
,
2020
, “
Odd–Even–Prime Pattern for PV Array to Increase Power Output Under Partial Shading Conditions
,”
Energy
,
213
, p.
118780
.
26.
Anjum
,
S.
,
Mukherjee
,
V.
, and
Mehta
,
G.
,
2020
, “
Hyper SuDoKu-Based Solar Photovoltaic Array Reconfiguration for Maximum Power Enhancement Under Partial Shading Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
031302
.
27.
Srinivasan
,
A.
,
Devakirubakaran
,
S.
, and
Sundaram
,
B. M.
,
2020
, “
Mitigation of Mismatch Losses in Solar PV System—Two-Step Reconfiguration Approach
,”
Sol. Energy
,
206
, pp.
640
654
.
28.
Anjum
,
S.
,
Mukherjee
,
V.
, and
Mehta
,
G.
,
2020
, “
Advanced SuDoKu-Based Reconfiguration Strategies for Maximum Power Extraction From Partially Shaded Solar Photovoltaic Array
,”
ASME J. Sol. Energy Eng.
,
143
(
6
), p.
061003
.
29.
Nashih
,
S. K.
,
Fernandes
,
C. A. F.
,
Torres
,
J. P. N.
,
Gomes
,
J.
, and
Costa Branco
,
P. J.
,
2016
, “
Validation of a Simulation Model for Analysis of Shading Effects on Photovoltaic Panels
,”
ASME J. Sol. Energy Eng.
,
138
(
4
), p.
044503
.
30.
Bingöl
,
O.
, and
Özkaya
,
B.
,
2018
, “
Analysis and Comparison of Different PV Array Configurations Under Partial Shading Conditions
,”
Sol. Energy
,
160
, pp.
336
343
.
31.
Shahna
,
K. U.
, and
Mohamed
,
A.
,
2020
, “
A Novel Image Encryption Scheme Using Both Pixel Level and Bit Level Permutation With Chaotic Map
,”
Appl. Soft Comput.
,
90
, p.
106162
.
32.
Li
,
C.
,
Tan
,
K.
,
Feng
,
B.
, and
Lu
,
J.
,
2022
, “
The Graph Structure of the Generalized Discrete Arnold’s Cat Map
,”
IEEE Trans. Comput.
,
71
(
2
), pp.
364
377
.
33.
Bao
,
J.
, and
Yang
,
Q.
,
2012
, “
Period of the Discrete Arnold Cat Map and General Cat Map
,”
Nonlinear Dyn.
,
70
(
2
), pp.
1365
1375
.
34.
Jenisch
,
S.
, and
Uhl
,
A.
,
2014
, “
Visual Security Evaluation Based on SIFT Object Recognition
,”
AIAI: IFIP International Conference on Artificial Intelligence Applications and Innovations
, Rhodes
,
Greece,
September 19–21, 2014
; 436, pp.
624
633
.
You do not currently have access to this content.