Abstract

Many turbine models have been evolved to ameliorate the functioning of the small wind energy system. The newly developed helical Bach-type vertical axis wind turbine (VAWT) is used in this analysis with an idea to improve the overall performance. The shape of the conventional Bach-type vertical axis wind turbine is a modified form of a Savonius model which has both circular and straight portions to the blade profile. The simple Bach model has a maximum coefficient of performance corresponding to the blade arc angle of 45 deg and 225 deg. However, it consists of negative torque at the rotational angles of about 120–180 deg and 300–360 deg. Moreover, in the newly developed helical Bach, rotors can reduce the variation in torque in the rotational cycle; thereby, uniform torque is achieved in all angular position with improved performance. In this paper, experiments were conducted in the natural wind at Wind Turbine Research Station, Kayathar, Tamil Nadu, India. In addition to experimental work, the three-dimensional steady-state numerical investigations have been performed in the helical Bach vertical axis wind turbine. It is found that the numerical results are well matched with the experimental data. Based on the above computational study, it is found that helical Bach models have an increase in overall performance compared to the conventional Bach models and helical Savonius model.

References

1.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
2.
Cooney
,
C.
,
Byrne
,
R.
,
Lyons
,
W.
, and
O’Rourke
,
F.
,
2017
, “
Performance Characterisation of a Commercial-Scale Wind Turbine Operating in an Urban Environment, Using Real Data
,”
Energy Sustain. Dev.
,
36
, pp.
44
54
.
3.
Lakshmanan
,
N.
,
Gomathinayagam
,
S.
,
Harikrishna
,
P.
,
Abraham
,
A.
, and
Ganapathi
,
S. C.
,
2009
, “
Basic Wind Speed Map of India With Long Term-Hourly Wind Data
,”
Curr. Sci.
,
96
(
7
), pp.
911
922
. https://www.currentscience.ac.in/Volumes/96/07/0911.pdf
4.
Seralathan
,
S. B. V. L. R.
,
Macha
,
Y. Y.
,
Pinninti
,
B. K.
, and
Venkatesan
,
H.
,
2018
, “
Modelling and Development of Passive Permanent Magnetic Bearing for a Small Cross Flow Vertical Axis Wind Turbine
,”
Int. J. Renew. Energy Res.
,
8
(
4
), pp.
1868
1880
.
5.
Premkumar
,
T. M.
,
Sivamani
,
S.
,
Kirthees
,
E.
,
Hariram
,
V.
, and
Mohan
,
T.
,
2018
, “
Data Set on the Experimental Investigations of a Helical Savonius Style VAWT With and Without End Plates
,”
Data Brief
,
19
, pp.
1925
1932
.
6.
Divakaran
,
U.
,
Ramesh
,
A.
,
Mohammad
,
A.
, and
Velamati
,
R. K.
,
2021
, “
Effect of Helix Angle on the Performance of Helical Vertical Axis Wind Turbine
,”
Energies
,
14
(
2
), pp.
1
24
.
7.
Kamoji
,
M. A.
,
Prabhu
,
S. V.
, and
Kedare
,
S. B.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
8.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renew. Energy
,
89
, pp.
231
244
.
9.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Pittalwala
,
A.
,
1983
, “
Blade Configurations and Performance of the Savonius Rotor With Application to an Irrigation System in Indonesia
,”
ASME J. Sol. Energy Eng.
,
105
(
3
), pp.
294
299
.
10.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance and Optimization of the Savonius Rotor
,”
Proc. Inst. Mech. Eng. Part A
,
227
(
4
), pp.
528
542
.
11.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on Single Stage, Two Stage and Three Stage Conventional Savonius Rotor
,”
Int. J. Energy Res.
,
32
(
10
), pp.
877
895
.
12.
Fujisawa
,
N.
,
1992
, “
On the Torque Mechanism of Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
40
(
3
), pp.
277
292
.
13.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2007
, “
Wind Tunnel Tests on Single Stage Helical Savonius Rotor
,”
5th International Energy Conversion Engineering Conference and Exhibit (IECEC)
,
St. Louis, MO
,
June 25–27
, pp.
1
10
.
14.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2011
, “
Experimental Investigations on Two and Three Stage Modified Savonius Rotor
,”
Wind Eng.
,
35
(
4
), pp.
483
509
.
15.
Saad
,
A. S.
,
Elwardany
,
A.
,
El-Sharkawy
,
I. I.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2021
, “
Performance Evaluation of a Novel Vertical Axis Wind Turbine Using Twisted Blades in Multi-Stage Savonius Rotors
,”
Energy Convers. Manage.
,
235
, pp.
1
21
.
16.
Fujisawa
,
N.
,
1996
, “
Velocity Measurements and Numerical Calculations of Flow Fields in and Around Savonius Rotors
,”
J. Wind Eng. Ind. Aerodyn.
,
59
(
1
), pp.
39
50
.
17.
Kumar
,
R. S.
,
Premkumar
,
T. M.
,
Sivamani
,
S.
, and
Hariram
,
V.
,
2018
, “
Numerical Analysis of Different Blade Shapes of a Savonius Style Vertical Axis Wind Turbine
,”
Int. J. Renew. Energy Res.
,
8
(
3
), pp.
1657
1666
.
18.
Biswas
,
A.
,
Gupta
,
R.
, and
Sharma
,
K. K.
,
2005
, “
Experimental Investigation of Overlap and Blockage Effects on Three-Bucket Savonius Rotors
,”
Wind Eng.
,
31
(
5
), pp.
363
368
.
19.
Kumbernuss
,
J.
,
Chen
,
J.
,
Yang
,
H. X.
, and
Lu
,
L.
,
2012
, “
Investigation Into the Relationship of the Overlap Ratio and Shift Angle of Double Stage Three Bladed Vertical Axis Wind Turbine (VAWT)
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
57
75
.
20.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Investigations on the Effect of Overlap Ratio and Blade Edge Conditions on the Performance of Conventional Savonius Rotor
,”
Wind Eng.
,
32
(
2
), pp.
163
178
.
21.
Premkumar
,
T. M.
,
Seralathan
,
S.
,
Gopalakrishnan
,
R.
,
Mohan
,
T.
, and
Hariram
,
V.
,
2018
, “
Experimental Data of the Study on H-Rotor With Semi-Elliptic Shaped Bladed Vertical Axis Wind Turbine
,”
Data Brief
,
19
, pp.
1828
1836
.
22.
Alexander
,
A. J.
, and
Holownia
,
B. P.
,
1978
, “
Wind Tunnel Tests on a Savonius Rotor
,”
J. Ind. Aerodyn.
,
3
(
4
), pp.
343
351
.
23.
Modi
,
V. J.
, and
Fernando
,
U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
111
(
1
), pp.
71
81
.
24.
Altan
,
B. D.
, and
Atılgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
25.
Tartuferi
,
M.
,
D’Alessandro
,
V.
,
Mantelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
, pp.
371
384
.
26.
Goh
,
S. C.
, and
Schlüter
,
J. U.
,
2016
, “
Numerical Simulation of a Savonius Turbine Above an Infinite-Width Forward Facing Step
,”
Wind Eng.
,
40
(
2
), pp.
134
147
.
27.
Sivamani
,
S.
,
Micha Premkumar
,
T.
,
Sohail
,
M.
,
Mohan
,
T.
, and
Hariram
,
V.
,
2017
, “
Experimental Data on Load Test and Performance Parameters of a LENZ Type Vertical Axis Wind Turbine in Open Environment Condition
,”
Data Brief
,
15
, pp.
1035
1042
.
28.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Numerical Investigation to Assess an Optimal Blade Profile for the Drag Based Vertical Axis Wind Turbine
,”
Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition. Volume 6A: Energy
,
San Diego, CA
,
Nov. 15–21
, p.
V06AT07A084
.
29.
El-Baz
,
A. R.
,
Youssef
,
K.
, and
Mohamed
,
M. H.
,
2016
, “
Innovative Improvement of a Drag Wind Turbine Performance
,”
Renew. Energy
,
86
, pp.
89
98
.
30.
Sun
,
X.
,
Zhu
,
J.
,
Li
,
Z.
, and
Sun
,
G.
,
2021
, “
Rotation Improvement of Vertical Axis Wind Turbine by Offsetting Pitching Angles and Changing Blade Numbers
,”
Energy
,
215
, p.
119177
.
31.
Barnes
,
A.
,
Marshall-Cross
,
D.
, and
Hughes
,
B. R.
,
2021
, “
Towards a Standard Approach for Future Vertical Axis Wind Turbine Aerodynamics Research and Development
,”
Renew. Sustain. Energy Rev.
,
148
, p.
111221
.
32.
Ghosh
,
A.
,
Biswas
,
A.
,
Sharma
,
K. K.
, and
Gupta
,
R.
,
2014
, “
Computational Analysis of Flow Physics of a Combined Three Bladed Darrius Savonius Wind Rotor
,”
J. Energy Inst.
,
88
(
4
), pp.
425
437
.
33.
Kang
,
C.
,
Liu
,
H.
, and
Yang
,
X.
,
2014
, “
Review of Fluid Dynamics Aspects of Savonius Rotor Based Vertical Axis Wind Rotors
,”
Renew. Sustain. Energy Rev.
,
33
, pp.
499
508
.
34.
Hosseini
,
A.
, and
Goudarzi
,
N.
,
2019
, “
Design and CFD Study of a Hybrid Vertical-Axis Wind Turbine by Employing a Combined Bach-Type and H-Darrieus Rotor Systems
,”
Energy Convers. Manage.
,
189
, pp.
49
59
.
35.
Edwards
,
J. M.
,
Angelo Danao
,
L.
, and
Howell
,
R. J.
,
2012
, “
Novel Experimental Power Curve Determination and Computational Methods for the Performance Analysis of Vertical Axis Wind Turbines
,”
ASME J. Sol. Energy Eng.
,
134
(
3
), p.
031008
.
36.
Untaroiu
,
A.
,
Wood
,
H.
,
Allaire
,
P.
, and
Ribando
,
R.
,
2011
, “
Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach
,”
ASME J. Sol. Energy Eng.
,
133
(
4
), p.
041010
.
37.
Kacprzak
,
K.
,
Liskiewiz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renew. Energy
,
60
, pp.
578
585
.
38.
Micha Prem Kumar
,
T.
,
Mohan
,
T.
,
Silambarasan
,
P.
, and
Seralathan
,
S.
,
2017
, “
Numerical Simulation of Cluster of Small Vertical Axis Wind Turbine for Low Wind Speed Regime
,”
Proceedings of the ASME 2017 Gas Turbine India Conference, GT India 2017
,
Bangalore, India
,
Dec. 7–8
, p.
V002T06A007
.
39.
Sukanta
,
R.
, and
Saha
,
U. K.
, “
Review on the Numerical Investigations Into the Design and Development of Savonius Wind Rotors
,”
Renew. Sustain. Energy Rev.
,
24
, pp.
73
83
.
40.
Tong
,
Z.
, and
Dietmar
,
R.
,
2013
, “
Numerical Study of Detailed Flow Field and Performance of Savonius Wind Turbines
,”
Renew. Energy
,
51
, pp.
373
381
.
41.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
42.
Jonkman
,
J.
,
van Dam
,
J.
,
Forsyth
,
T.
, and
Davis
,
D.
,
2003
, “
Investigation of the IEC Safety Standard for Small Wind Turbine Design Through Modeling and Testing
,”
Proceedings of the ASME 2003 Wind Energy Symposium
,
Reno, NV
,
Jan. 6–9
, pp.
340
350
.
43.
Modi
,
V. J.
,
Roth
,
N. J.
, and
Fernando
,
M. S. U. K.
,
1984
, “
Optimum-Configuration Studies and Prototype Design of a Wind-Energy-Operated Irrigation System
,”
J. Wind Eng. Ind. Aerodyn.
,
16
(
1
), pp.
85
96
.
44.
Shamsoddin
,
S.
, and
Porté-Agel
,
F.
,
2020
, “
Effect of Aspect Ratio on Vertical-Axis Wind
,”
J. Fluid Mech.
,
889
(
R1
), pp.
1
12
.
45.
Fujisawa
,
N.
, and
Futoshi
,
G.
,
1992
, “
Pressure Measurements and Flow Visualization Study of a Savonius Rotor
,”
J. Wind Eng. Ind. Aerodyn.
,
39
(
1–3
), pp.
51
60
.
46.
Fujisawa
,
N.
, and
Futoshi
,
G.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
116
(
3
), pp.
149
152
.
47.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2021
, “
Modeling and Optimization for the Dynamic Performance of Vertical-Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021005
.
48.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S. S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables: Part I—Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.
49.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2013
, “
Wind Turbine CFD Modeling Using a Correlation-Based Transitional Model
,”
Renew. Energy
,
52
, pp.
31
39
.
50.
Menter
,
F. R.
,
1994
, “
Two Equation Eddy Viscosity Turbulence
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
51.
Premkumar
,
T. M.
, and
Chatterjee
,
D.
,
2008
, “
Numerical Study of Turbulent Flow Over an S-Shaped Hydrofoil
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
222
(
9
), pp.
1717
1734
.
52.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2017
, “
Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121105
.
53.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.