Abstract

This article presents a study of modeling and optimization for the dynamic performance of wind turbine composite material blades and investigates the effects of composite material stacking sequence in addition to some design parameters such as twist angle (ɸ) and aspect ratio (AR) on the whole wind turbine performance. The two-stage Savonius rotor VAWT composite blades are designed and simulated within the solidworks simulation 2020 package. Modified mechanical parameters are introduced to improve the scalability, reliability, and accuracy of the developed models. The lamination plate theory is used to compute the equivalent mechanical properties for each composite blade. The finite element analyses (FEAs) are conducted to investigate the dynamic characteristics (frequency and associated mode shapes) of wind turbine models. Taguchi tools such as analysis of variance (ANOVA), signal-to-noise (S/N) ratio and additive model were employed to evaluate and obtain the significant factors and determine the optimal combination levels of wind turbine design parameters. Mathematical modeling based on response surface methodology (RSM) has been established. The analysis of results shows that the aspect ratio with a contribution of 48.08% had the dominant impact on the rotor performance followed by the stacking sequence and twist angle.

References

1.
Mohd
,
H. A.
,
2012
,
Wind Energy Systems, Solutions for Power Quality and Stabilization
,
CRC Press Taylor & Francis Group
,
London
.
2.
Bhutta
,
M. M. A.
,
Hayat
,
N.
,
Farooq
,
A. U.
,
Zain Ali
,
S.
,
Jamil
,
R.
, and
Hussain
,
Z.
,
2012
, “
Vertical Axis Wind Turbine—A Review of Various Configurations and Design Techniques
,”
Renewable Sustainable Energy Rev.
,
16
(
4
), pp.
1926
1939
. 10.1016/j.rser.2011.12.004
3.
Adaramola
,
M.
,
2014
,
Wind Turbine Technology, Principles and Design
,
CRC Press Taylor & Francis Group, Apple Academic Press, Inc.
,
New Jersey
.
4.
Modi
,
V. J.
, and
Fernando
,
M. S. U. K.
,
1989
, “
On the Performance of the Savonius Wind Turbine
,”
ASME, J. Sol. Energy Eng. Trans.
,
111
(
1
), pp.
71
81
. 10.1115/1.3268289
5.
Fujisawa
,
N.
, and
Gotoh
,
F.
,
1994
, “
Experimental Study on the Aerodynamic Performance of a Savonius Rotor
,”
ASME, J. Sol. Energy Eng.
,
116
(
3
), pp.
148
152
. 10.1115/1.2930074
6.
Saqib Hameed
,
M.
,
Kamran Afaq
,
S.
, and
Shahid
,
F.
,
2015
, “
Finite Element Analysis of a Composite VAWT Blade
,”
Ocean Eng., Elsevier
,
109
, pp.
669
676
. 10.1016/j.oceaneng.2015.09.032
7.
Akwa
,
J. V.
,
Vielmo
,
H. A.
, and
Petry
,
A. P.
,
2012
, “
A Review on the Performance of Savonius Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
3054
3064
. 10.1016/j.rser.2012.02.056
8.
Zhipeng
,
T.
,
Yingxue
,
Y.
,
Liang
,
Z.
, and
Bowen
,
Y.
,
2013
, “
A Review on the New Structure of Savonius Wind Turbines
,”
Adv. Mater. Res.
,
608–609
, pp.
467
478
.
9.
Muscolo
,
G. G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
. 10.1016/j.egypro.2014.06.002
10.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Procedia
,
141
, pp.
383
388
. 10.1016/j.egypro.2017.11.047
11.
Shah
,
S. R.
,
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
Design, Modeling and Economic Performance of a Vertical Axis Wind Turbine
,”
Energy Reports
,
4
, pp.
619
623
. 10.1016/j.egyr.2018.09.007
12.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME, J. Solar Energy Eng.
,
141
(
3
), p.
030801
. 10.1115/1.4041848
13.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
. 10.1016/j.apenergy.2018.01.029
14.
Sranpat
,
C.
,
Unsakul
,
S.
,
Choljararux
,
P.
, and
Leephakpreeda
,
T.
,
2017
, “
CFD-Based Performance Analysis on Design Factors of Vertical Axis Wind Turbines at Low Wind Speeds
,”
Energy Procedia
,
138
, pp.
500
505
. 10.1016/j.egypro.2017.10.235
15.
Lates
,
M.
, and
Velicu
,
R.
,
2014
, “CFD Analysis and Theoretical Modelling of Multiblade Small Savonius Wind Turbines,”
Sustainable Energy in the Built Environment—Steps Towards nZEB
,
I.
Visa
, ed., Springer Proceedings in Energy,
Springer
,
Cham, Switzerland
.
16.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
. 10.1016/j.renene.2013.06.009
17.
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Pitch Optimization in Small-Size Darrieus Wind Turbines
,”
Energy Procedia
,
81
, pp.
122
132
. 10.1016/j.egypro.2015.12.067
18.
Rezaeiha
,
A.
,
Kalkman
,
I.
, and
Blocken
,
B.
,
2017
, “
Effect of Pitch Angle on Power Performance and Aerodynamics of a Vertical Axis Wind Turbine
,”
Appl. Energy
,
197
, pp.
132
150
. 10.1016/j.apenergy.2017.03.128
19.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters
,”
Energy Convers. Manag.
,
169
, pp.
45
77
. 10.1016/j.enconman.2018.05.042
20.
Wang
,
Z.
, and
Zhuang
,
M.
,
2017
, “
Leading-Edge Serrations for Performance Improvement on a Vertical-Axis Wind Turbine at Low Tip-Speed-Ratios
,”
Appl. Energy
,
208
, pp.
1184
1197
. 10.1016/j.apenergy.2017.09.034
21.
Roy
,
S.
, and
Saha
,
U. K.
,
2013
, “
Review of Experimental Investigations Into the Design, Performance, and Optimization of the Savonius Rotor
,”
J. Power Energy
,
227
(
4
), pp.
528
542
. 10.1177/0957650913480992
22.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
. 10.1016/j.apenergy.2008.09.019
23.
Wenehenubun
,
F.
,
Saputra
,
A.
, and
Sutanto
,
H.
,
2015
, “
An Experimental Study on the Performance of Savonius Wind Turbines Related With the Number of Blades
,”
Energy Procedia
,
68
, pp.
297
304
. 10.1016/j.egypro.2015.03.259
24.
Kumbernuss
,
J.
,
Chen
,
J.
,
Yang
,
H. X.
, and
Lu
,
L.
,
2012
, “
Investigation Into the Relationship of the Overlap Ratio and Shift Angle of Double Stage Three Bladed Vertical Axis Wind Turbine (VAWT)
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
57
75
. 10.1016/j.jweia.2012.03.021
25.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2020
, “
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Composite Blades
,”
Int. J. Mech. Prod. Eng. (IJMPE)
,
8
(
6
).
26.
Wang
,
Z.
,
Wang
,
Y.
, and
Zhuang
,
M.
,
2018
, “
Improvement of the Aerodynamic Performance of Vertical Axis Wind Turbines With Leading-Edge Serrations and Helical Blades Using CFD and Taguchi Method
,”
Energy Convers. Manag.
,
177
, pp.
107
121
. 10.1016/j.enconman.2018.09.028
27.
Dhamotharan
,
V.
,
Meena
,
R.
,
Jadhav
,
P.
,
Ramu
,
P.
, and
Arul Prakash
,
K.
,
2015
, “Robust Design of Savonius Wind Turbine,”
Renewable Energy in the Service of Mankind
, Vol.
1
,
Springer International Publishing
,
Cham, Switzerland
, pp.
913
923
.
28.
Krishnaiah
,
K.
, and
Shahabudeen
,
P.
,
2012
,
Applied Design of Experiments and Taguchi Methods
,
PHI Learning Private Limited
,
New Delhi
.
29.
Ross
,
P. J.
,
2005
,
Taguchi Techniques for Quality Engineering
,
McGraw-Hill
,
New York
.
30.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons, Inc
,
Hoboken, New Jersey
.
31.
Fujisawa
,
N.
,
Ishimatsu
,
K.
, and
Kage
,
K.
,
1995
, “
A Comparative Study of Navier-Stokes Calculations and Experiments for the Savonius Rotor
,”
ASME J. Sol. Energy Eng.
,
117
(
4
), pp.
344
346
. 10.1115/1.2847898
32.
Jian
,
C.
,
Kumbernuss
,
J.
,
Linhua
,
Z.
,
Lin
,
L.
, and
Hongxing
,
Y.
,
2012
, “
Influence of Phase-Shift and Overlap Ratio on Savonius Wind Turbine’s Performance
,”
ASME, J. Sol. Energy Eng.
,
134
(
1
), p.
011016
. 10.1115/1.4004980
33.
Mallick
,
P. K.
,
2008
,
Fiber Reinforced Composites: Materials, Manufacturing, and Design
,
Taylor & Francis Group, LLC
,
London
.
34.
Chou
,
T.-W.
, and
Kelly
,
A.
,
1980
, “
Mechanical Properties of Composites
,”
Annnu. Rev. Mater. Sci.
,
10
(
1
), pp.
229
259
. 10.1146/annurev.ms.10.080180.001305
35.
MSC Software
,
2019
, MSC/PATRAN User Manual.
36.
Kurowski
,
P.
,
2019
,
Vibration Analysis With SolidWorks Simulation 2019
,
SDC Publications
,
USA
.
37.
Ed Akin
,
J.
,
2010
,
Finite Element Analysis Concepts via SolidWorks
,
World Scientific Co.
,
Hackensack, NJ
.
38.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.