This paper proposes a new method based on a Markov model to calculate the reliability of grid-connected photovoltaic (PV) systems. This system is a grid-connected PV system consisting of PV modules, a multiphase DC–DC converter, an inverter, an inverter controller, and an maximum power point tracking (MPPT) controller at University of Isfahan. This system is considered repairable. Also, different levels of operation are considered for the system equipment. Reliability of the PV modules, the multiphase DC–DC converter, and the inverter has been calculated by the Markov model. Finally, the reliability of the entire PV system is calculated by the Markov model. The proposed algorithm is applied to the PV system positioned at University of Isfahan. Simulation results show the applicability of this method for calculating the reliability of grid-connected PV systems.

References

1.
Sridhar
,
R.
,
Jeevananthan
,
S.
,
Dash
,
S. S.
, and
Vemula
,
K.
,
2014
, “
Investigation on a Modified 11-Level Cascaded Inverter Fed by Photovoltaic Array for Standalone Applications
,”
ASME J. Sol. Energy Eng.
,
137
(
2
), p.
021002
.
2.
Ross
,
R. G.
, Jr.
,
2014
, “
PV Reliability Development Lessons From JPL's Flat Plate Solar Array Project
,”
IEEE J. Photovoltaic
,
4
(
1
), pp.
291
298
.
3.
Koutroulis
,
E.
, and
Blaabjerg
,
F.
,
2013
, “
Design Optimization of Transformer Less Grid-Connected PV Inverters Including Reliability
,”
IEEE Trans. Power Electron.
,
28
(
1
), pp.
325
335
.
4.
Harb
,
S.
, and
Balog
,
R. S.
,
2013
, “
Reliability of Candidate Photovoltaic Module Integrated-Inverter (PV-MII) Topologies—A Usage Model Approach
,”
IEEE Trans. Power Electron.
,
28
(
6
), pp.
3019
3027
.
5.
Richardeau
,
F.
, and
Pham
,
T. T. L.
,
2013
, “
Reliability Calculation of Multilevel Converters: Theory and Applications
,”
IEEE Trans. Ind. Electron.
,
60
(
10
), pp.
4225
4233
.
6.
Dhople
,
S. V.
,
Davoudi
,
A.
,
Domínguez-García
,
A. D.
, and
Chapman
,
P. L.
,
2012
, “
A Unified Approach to Reliability Assessment of Multiphase DC–DC Converters in Photovoltaic Energy Conversion Systems
,”
IEEE Trans. Power Electron.
,
27
(
2
), pp.
739
751
.
7.
Ribeiro
,
E.
,
Marques Cardoso
,
A. J.
, and
Boccaletti
,
Ch.
,
2013
, “
Fault-Tolerant Strategy for a Photovoltaic DC–DC Converter
,”
IEEE Trans. Power Electron.
,
28
(
6
), pp.
3008
3018
.
8.
De León-Aldaco
,
S. E.
,
Calleja
,
H.
,
Chan
,
F.
, and
Jiménez-Grajales
,
H. R.
,
2013
, “
Effect of the Mission Profile on the Reliability of a Power Converter Aimed at Photovoltaic Applications—A Case Study
,”
IEEE Trans. Power Electron.
,
28
(
6
), pp.
2998
3007
.
9.
De León-Aldaco
,
S. E.
,
Calleja
,
H.
, and
Alquicira
,
J. A.
,
2015
, “
Reliability and Mission Profiles of Photovoltaic Systems: A FIDES Approach
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2578
2586
.
10.
Chan
,
F.
, and
Calleja
,
H.
,
2011
, “
Reliability Estimation of Three Single-Phase Topologies in Grid-Connected PV Systems
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2683
2689
.
11.
Zhang
,
P.
,
Wang
,
Y.
,
Xiao
,
W.
, and
Li
,
W.
,
2012
, “
Reliability Evaluation of Grid-Connected Photovoltaic Power Systems
,”
IEEE Trans. Sustainable Energy
,
3
(
3
), pp.
379
389
.
12.
Song
,
J.
,
Krishnamurthy
,
V.
,
Kwasinski
,
A.
, and
Sharma
,
R.
,
2013
, “
Development of a Markov-Chain-Based Energy Storage Model for Power Supply Availability Assessment of Photovoltaic Generation Plants
,”
IEEE Trans. Sustainable Energy
,
4
(
2
), pp.
491
500
.
13.
Aten
,
M.
,
Towers
,
G.
,
Whitley
,
C.
,
Wheeler
,
P.
,
Clare
,
J.
, and
Bradley
,
K.
,
2006
, “
Reliability Comparison of Matrix and Other Converter Topologies
,”
IEEE Trans. Aerosp. Electron. Syst.
,
42
(
3
), pp.
867
875
.
You do not currently have access to this content.