Reducing levelized electricity costs of concentrated solar power (CSP) plants can be of great potential in accelerating the market penetration of these sustainable technologies. Linear Fresnel reflectors (LFRs) are one of these CSP technologies that may potentially contribute to such cost reduction. However, due to very little previous research, LFRs are considered as a low efficiency technology. In this type of solar collectors, there is a variety of design approaches when it comes to optimizing such systems. The present paper aims to tackle a new research axis based on variability study of heliostat curvature as an approach for optimizing small and large-scale LFRs. Numerical investigations based on a ray tracing model have demonstrated that LFR constructors should adopt a uniform curvature for small-scale LFRs and a variable curvature per row for large-scale LFRs. Better optical performances were obtained for LFRs regarding these adopted curvature types. An optimization approach based on the use of uniform heliostat curvature for small-scale LFRs has led to a system cost reduction by means of reducing its receiver surface and height.

References

1.
Belakhdar
,
N.
,
Kharbach
,
M.
, and
Afilal
,
M. E.
,
2014
, “
The Renewable Energy Plan in Morocco, a Divisia Index Approach
,”
Energy Strategy Rev.
,
4
, pp.
11
15
.
2.
Fritzsche
,
K.
,
Zejli
,
D.
, and
Tänzler
,
D.
,
2011
, “
The Relevance of Global Energy Governance for Arab Countries: The Case of Morocco
,”
Energy Policy
,
39
(
8
), pp.
4497
4506
.
3.
Benkhadra
,
A.
,
2009
, “
Does Morocco Provide a New Model for Bridging Old and New Energy Systems?
,”
Morocco's Annual Investment Conference
, London, Nov. 9, pp. 1–12.http://www.moroccanembassylondon.org.uk/images/photoConf/Morocco%27s_Annual_Investment_Conference_2009_-_Minister_Benkhadra_presentation.pdf
4.
Benyakhlef
,
S.
,
Al Mers
,
A.
,
Bouatem
,
A.
,
Boutammachte
,
N.
, and
Merroun
,
O.
, 2015, “Performance Analysis of a Parabolic Linear Fresnel System,”
International Renewable and Sustainable Energy Conference
(
IRSEC
), Marrakech, Morocco, Dec. 10–13, pp. 1–5.
5.
Pino
,
F. J.
,
Caro
,
R.
,
Rosa
,
F.
, and
Guerra
,
J.
,
2013
, “
Experimental Validation of an Optical and Thermal Model of a Linear Fresnel Collector System
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1463
1471
.
6.
Facão
,
J.
, and
Oliveira
,
A. C.
,
2011
, “
Numerical Simulation of a Trapezoidal Cavity Receiver for a Linear Fresnel Solar Collector Concentrator
,”
Renewable Energy
,
36
(
1
), pp.
90
96
.
7.
Abbas
,
R.
, and
Martínez-Val
,
J. M.
,
2017
, “
A Comprehensive Optical Characterization of Linear Fresnel Collectors by Means of an Analytic Study
,”
Appl. Energy
,
185
(
Pt. 2
), pp.
1136
1151
.
8.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Wang
,
K.
,
Du
,
B. C.
, and
Cui
,
F. Q.
,
2014
, “
A Detailed Parameter Study on the Comprehensive Characteristics and Performance of a Parabolic Trough Solar Collector System
,”
Appl. Therm. Eng.
,
63
(
1
), pp.
278
289
.
9.
Porta
,
F. L.
,
2005
, “
Technical and Economical Analysis of Future Perspectives of Solar Thermal Power Plants
,” Institute for Energy Economics and Rational Energy, University of Stuttgart, Stuttgart, Germany,
Report of IER
, pp.
1
86
.http://docshare04.docshare.tips/files/7669/76699127.pdf
10.
Abbas
,
R.
,
Montes
,
M. J.
,
Piera
,
M.
, and
Martínez-Val
,
J. M.
,
2012
, “
Solar Radiation Concentration Features in Linear Fresnel Reflector Arrays
,”
Energy Convers. Manage.
,
54
(
1
), pp.
133
144
.
11.
Feuermann
,
D.
, and
Gordon
,
J. M.
,
1991
, “
Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator
,”
ASME J. Sol. Energy Eng.
,
113
(
4
), pp.
272
279
.
12.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.
13.
Morin
,
G.
,
Karl
,
M.
,
Mertins
,
M.
, and
Selig
,
M.
,
2015
, “
Molten Salt as a Heat Transfer Fluid in a Linear Fresnel Collector–Commercial Application Backed by Demonstration
,”
Energy Procedia
,
69
, pp.
689
698
.
14.
Morin
,
G.
,
Dersch
,
J.
,
Platzer
,
W.
,
Eck
,
M.
, and
Häberle
,
A.
,
2012
, “
Comparison of Linear Fresnel and Parabolic Trough Collector Power Plants
,”
Sol. Energy
,
86
(
1
), pp.
1
12
.
15.
Heimsath
,
A.
,
Bern
,
G.
,
van Rooyen
,
D.
, and
Nitz
,
P.
,
2014
, “
Quantifying Optical Loss Factors of Small Linear Concentrating Collectors for Process Heat Application
,”
Energy Procedia
,
48
, pp.
77
86
.
16.
Dang
,
A.
,
1986
, “
Concentrators: A Review
,”
Energy Convers. Manage.
,
26
(
1
), pp.
11
26
.
17.
Balasubramanian
,
V.
, and
Sankarasubramanian
,
G.
,
1993
, “
Stretched Tape Design of Fixed Mirror Solar Concentrator With Curved Mirror Elements
,”
Sol. Energy
,
51
(
2
), pp.
109
119
.
18.
Mills
,
D. R.
, and
Morrison
,
G. L.
,
2000
, “
Compact Linear Fresnel Reflector Solar Thermal Power plants
,”
Sol. Energy
,
68
(
3
), pp.
263
283
.
19.
Benyakhlef
,
S.
,
Al Mers
,
A.
,
Merroun
,
O.
,
Bouatem
,
A.
,
Boutammachte
,
N.
,
El Alj
,
S.
,
Ajdad
,
H.
,
Erregueragui
,
Z.
, and
Zemmouri
,
E.
,
2016
, “
Impact of Heliostat Curvature on Optical Performance of Linear Fresnel Solar Concentrators
,”
Renewable Energy
,
89
, pp.
463
474
.
20.
Benyakhlef
,
S.
,
Al Mers
,
A.
,
Bouatem
,
A.
,
Boutammachte
,
N.
, and
Merroun
,
O.
,
2014
, “
Verification & Validation of Simulation Code for Linear Fresnel Systems
,”
International Renewable and Sustainable Energy Conference
(
IRSEC
), Ouarzazate, Morocco, Oct. 17–19, pp.
214
218
.
21.
Abbas
,
R.
,
Muñoz-Antón
,
J.
,
Valdés
,
M.
, and
Martínez-Val
,
J. M.
,
2013
, “
High Concentration Linear Fresnel Reflectors
,”
Energy Convers. Manage.
,
72
, pp.
60
68
.
22.
Veynandt
,
F.
,
2011
, “
Cogénération heliothermodynamique avec concentrateur lineaire de Fresnel: modelisation de l'ensemble du procede
,” Ph.D. dissertation, University of Toulouse, Toulouse, France.
You do not currently have access to this content.