Abstract

Light detection and ranging (lidar) imaging systems are being increasingly used in autonomous vehicles. However, the final technology implementation is still undetermined as major automotive manufacturers are only starting to select providers for data collection units that can be introduced in commercial vehicles. Currently, testing for autonomous vehicles is mostly performed in sunny environments. Experiments conducted in good weather cannot provide information regarding performance quality under extreme conditions such as fog, rain, and snow. Under extreme conditions, many instances of false detection may arise because of the backscattered intensity, thereby reducing the reliability of the sensor. In this work, lidar sensors were tested in adverse weather to understand how extreme weather affects data collection. Testing setup and algorithms were developed for this purpose. The results are expected to provide technological validation for the commercial use of lidar in automated vehicles. The effective ranges of two popular lidar sensors were estimated under adverse weather conditions, namely, fog, rain, and snow. Results showed that fog severely affected lidar performance, and rain too had some effect on the performance. Meanwhile, snow did not affect lidar performance.

References

1.
Leonard
,
J.
,
How
,
J.
,
Teller
,
S.
,
Berger
,
M.
,
Campbell
,
S.
,
Fiore
,
G.
,
Fletcher
,
L.
,
Frazzoli
,
E.
,
Huang
,
A.
,
Karaman
,
S.
,
Koch
,
O.
,
Kuwata
,
Y.
,
Moore
,
D.
,
Olson
,
E.
,
Peters
,
S.
,
Teo
,
J.
,
Truax
,
R.
,
Walter
,
M.
,
Barrett
,
D.
,
Epstein
,
A.
,
Maheloni
,
K.
,
Moyer
,
K.
,
Jones
,
T.
,
Buckley
,
R.
,
Antone
,
M.
,
Galejs
,
R.
,
Krishnamurthy
,
S.
, and
Williams
,
J.
,
2008
, “
A Perception-Driven Autonomous Urban Vehicle
,”
J. Field Robot.
,
25
(
10
), pp.
727
774
.10.1002/rob.20262
2.
Li
,
Y.
,
2013
, “
Stereo Vision and LIDAR-Based Dynamic Occupancy Grid Mapping: Application to Scenes Analysis for Intelligent Vehicles
,” Ph.D. dissertation,
University Technology Belfort-Montbeliard
, Belfort, Sevenans and Montbéliard, France.
3.
Rasshofer
,
R. H.
,
Spies
,
M.
, and
Spies
,
H.
,
2011
, “
Influences of Weather Phenomena on Automotive Laser Radar Systems
,”
Adv. Radio Sci.
,
9
(
B.2
), pp.
49
60
.10.5194/ars-9-49-2011
4.
Zang, S., Ding, M., Smith, D., Tyler, P., Rakotoarivelo, T., and Kaafar, M. A.
,
2019
, “
The Impact of Adverse Weather Conditions on Autonomous Vehicles: How Rain, Snow, Fog, and Hail Affect the Performance of a Self-Driving Car
,” IEEE Veh. Technol. Mag., 14, pp.
103
111
.
5.
Filgueira
,
A.
,
González-Jorge
,
H.
,
Lagüela
,
S.
,
Díaz-Vilariño
,
L.
, and
Arias
,
P.
,
2017
, “
Quantifying the Influence of Rain in LiDAR Performance
,”
Measurement
,
95
, pp.
143
148
.10.1016/J.MEASUREMENT.2016.10.009
6.
Hasirlioglu
,
S.
,
Doric
,
I.
,
Lauerer
,
C.
, and
Brandmeier
,
T.
,
2016
, “
Modeling and Simulation of Rain for the Test of Automotive Sensor Systems
,”
Proceedings of the IEEE Intelligent Vehicles Symposium (IV)
, Gotenburg, Sweden, June 19–22, pp.
286
291
.10.1109/IVS.2016.7535399
7.
Fersch
,
T.
,
Buhmann
,
A.
,
Koelpin
,
A.
, and
Weigel
,
R.
,
2016
, “
The Influence of Rain on Small Aperture LiDAR Sensors
,”
Proceedings of the German Microwave Conference (GeMiC)
, Bochum, Germany, Mar. 14–16, pp.
84
87
.10.1109/GEMIC.2016.7461562
8.
Goodin
,
C.
,
Carruth
,
D.
,
Doude
,
M.
, and
Hudson
,
C.
,
2019
, “
Predicting the Influence of Rain on LIDAR in ADAS
,”
Electronics
,
8
(
1
), p.
89
.10.3390/electronics8010089
9.
Liu
,
Y.
,
Zhao
,
Y.
,
Hu
,
Z.
,
Mourelatos
,
Z.
, and
Papadimitriou
,
D.
,
2019
, “
Collision-Avoidance Reliability Analysis of Automated Vehicle Based on Adaptive Surrogate Modeling
,”
ASCE-ASME J. Risk Uncertainty, Part B.
,
5
(
2
), p. 020906.10.1115/1.4042974
10.
Hasirlioglu
,
S.
,
Doric
,
I.
,
Kamann
,
A.
, and
Riener
,
A.
,
2017
, “
Reproducible Fog Simulation for Testing Automotive Surround Sensors
,” Proceedings of the IEEE 85th Vehicular Technology Conference (
VTC Spring
), IEEE, Sydney, Australia, June 4–7, pp.
1
7
.10.1109/VTCSpring.2017.8108566
11.
Kim
,
B. K.
, and
Sumi
,
Y.
,
2017
, “
Performance Evaluation of Safety Sensors in the Indoor Fog Chamber
,” Proceedings of the IEEE Underwater Technology (
UT
), IEEE, Busan, South Korea, Feb. 21–24, pp.
1
3
.10.1109/UT.2017.7890317
12.
Kutila
,
M.
,
Pyykonen
,
P.
,
Holzhuter
,
H.
,
Colomb
,
M.
, and
Duthon
,
P.
,
2018
, “
Automotive LiDAR Performance Verification in Fog and Rain
,” Proceedings of the 21st International Conference on Intelligent Transportation Systems (
ITSC
), IEEE, Maui, HI, Nov. 4–7, pp.
1695
1701
.10.1109/ITSC.2018.8569624
13.
Abdo
,
J.
,
Hassan
,
E.
,
Boulbrachene
,
K.
, and
Kwak
,
J.
,
2019
, “
Drillstring Failure—Identification, Modeling, and Experimental Characterization
,”
ASCE-ASME J. Risk Uncertainty, Part B
,
5
(
2
), p.
021004
.10.1115/1.4041638
14.
Colomb
,
M.
,
Hirech
,
K.
,
André
,
P.
,
Boreux
,
J. J.
,
Lacôte
,
P.
, and
Dufour
,
J.
,
2008
, “
An Innovative Artificial Fog Production Device Improved in the European Project “FOG
,”
Atmos. Res.
,
87
(
3–4
), pp.
242
251
.10.1016/j.atmosres.2007.11.021
15.
Rosique, F., Navarro, P. J., Fernández, C., and Padilla, A.
,
2019
, “
A Systematic Review of Perception System and Simulators for Autonomous Vehicles Research
,”
Sensors
, 19, p. 648
.10.3390/s19030648
16.
Wang
,
B.
, and
Lin
,
J. X.
,
2013
, “
Monte Carlo Simulation of Laser Beam Scattering by Water Droplets
,”
Proceedings of the International Symposium on Photoelectronic Detection and Imaging 2013: Laser Sensing and Imaging and Applications. International Society for Optics and Photonics
, Bellingham, WA, Vol.
8905
, Sept. 4, p.
89052
.
17.
Wandinger
,
U.
,
2005
,
Introduction to LiDAR
, Vol.
102
of Springer Series in Optical Sciences,
C.
Weitkamp
, ed.,
Springer-Verlag
,
New York
, pp.
1
18
.
18.
IEC
,
2017
, “
Interpretation Sheet 1-Safety of Laser Products—Part 1: Equipment Classification and Requirements
,” IEC, Geneva, Switzerland, Standard No.
60825
1
.
19.
Kolb
,
A.
,
Barth
,
E.
,
Koch
,
R.
, and
Larsen
,
R.
,
2010
, “
Time-of-Flight Cameras in Computer Graphics
,”
Comput. Gr. Forum
,
29
(
1
), pp.
141
159
.10.1111/j.1467-8659.2009.01583.x
20.
Illade-Quinteiro
,
J.
,
Brea
,
V.
,
López
,
P.
,
Cabello
,
D.
, and
Doménech-Asensi
,
G.
,
2015
, “
Distance Measurement Error in Time-of-Flight Sensors Due to Shot Noise
,”
Sensors
,
15
(
3
), pp.
4624
4642
.10.3390/s150304624
21.
Sarbolandi
,
H.
,
Plack
,
M.
, and
Kolb
,
A.
,
2018
, “
Pulse Based Time-of-Flight Range Sensing
,”
Sensors
,
18
(
6
), p.
1679
.10.3390/s18061679
22.
Petrovskaya
,
A.
, and
Thrun
,
S.
,
2009
, “
Model-Based Vehicle Detection and Tracking for Autonomous Urban Driving
,”
Auton. Robots
,
26
(
2–3
), pp.
123
139
.10.1007/s10514-009-9115-1
23.
Himmelsbach
,
M.
,
MüLler
,
A.
,
LüTtel
,
T.
, and
WüNsche
,
H.-J.
,
2008
, “
LIDAR-Based 3D Object Perception
,”
Proceedings of First International Workshop on Cognition for Technical Systems
, Vol.
1
, Munich, Germany, Oct. 6–8, pp.
1
6
.
24.
Chen
,
T.
,
Dai
,
B.
,
Liu
,
D.
, and
Song
,
J.
,
2014
, “
Performance of Global Descriptors for Velodyne-Based Urban Object Recognition
,”
IEEE
Intelligent Vehicles Symposium Proceedings, Dearborn, MI, June 8–11, pp.
667
673
10.1109/IVS.2014.6856425.
25.
Premebida
,
C.
,
Ludwig
,
O.
, and
Nunes
,
U.
,
2009
, “
Lidar and Vision-Based Pedestrian Detection System
,”
J. Field Robotics
, 26(9), pp.
696
711
.10.1002/rob.20312
26.
Challa
,
S.
,
Morelande
,
M. R.
,
MušIcki
,
D.
, and
Evans
,
R. J.
,
2011
,
Fundamentals of Object Tracking
,
Cambridge University Press
,
Cambridge, UK
.
28.
Ouster
, “Mid-Range Lidar Sensor Os1,” Ouster, San Francisco, CA, accessed Sept. 1, 2021, https://ouster.com/products/os1-lidar-sensor/
29.
Alsadik
,
B.
,
2020
, “
Ideal Angular Orientation of Selected 64-Channel Multi Beam Lidars for Mobile Mapping Systems
,”
Remote Sensor
,
12
(
3
), p.
510
.10.3390/rs12030510
You do not currently have access to this content.