Abstract

For many data-driven reliability problems, the population is not homogeneous; i.e., its statistics are not described by a unimodal distribution. Also, the interval of observation may not be long enough to capture the failure statistics. A limited failure population (LFP) consists of two subpopulations, a defective and a nondefective one, with well-separated modes of the two underlying distributions. In reliability and warranty forecasting applications, the estimation of the number of defective units and the estimation of the parameters of the underlying distribution are very important. Among various estimation methods, the maximum likelihood estimation (MLE) approach is the most widely used. Its likelihood function, however, is often incomplete, resulting in an erroneous statistical inference. In this paper, we estimate the parameters of a LFP analytically using a rational function fitting (RFF) method based on the Weibull probability plot (WPP) of observed data. We also introduce a censoring factor (CF) to assess how sufficient the number of collected data is for statistical inference. The proposed RFF method is compared with existing MLE approaches using simulated data and data related to automotive warranty forecasting.

References

1.
Boag
,
J. W.
,
1948
, “
Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy
,”
J. R. Stat. Soc.
,
11
(
B
), pp.
15
53
. https://www.jstor.org/stable/2983694
2.
Fourt
,
L. A.
, and
Woodlock
,
J. W.
,
1960
, “
Early Prediction of Market Success for New Grocery Products
,”
J. Mark.
,
25
(
2
), pp.
31
38
.10.1177/002224296002500206
3.
Anscombe
,
F. J.
,
1961
, “
Estimating a Mixed Exponential Response Law
,”
J. Am. Stat. Assoc.
,
56
(
295
), pp.
493
502
.10.1080/01621459.1961.10480640
4.
Maltz
,
M. D.
, and
Mccleary
,
R.
,
1977
, “
The Mathematics of Behavioral Change: Recidivism and Construct Validity
,”
Eval. Rev.
,
1
(
3
), pp.
421
438
.10.1177/0193841X7700100304
5.
Lloyd
,
M. R.
, and
Joe
,
G. W.
,
1979
, “
Recidivism Comparisons Across Groups, Methods of Estimation and Tests of Significance for Recidivism Rates and Asymptotes
,”
Eval. Q.
,
3
(
1
), pp.
105
117
.10.1177/0193841X7900300108
6.
Stollmack
,
S.
,
1979
, “
Comments on the Mathematics of Behavioral Change
,”
Eval. Q.
,
3
(
1
), pp.
118
123
.10.1177/0193841X7900300109
7.
Blumenthal
,
S.
, and
Marcus
,
R.
,
1975
, “
Estimating Population Size With Exponential Failure
,”
J. Am. Stat. Assoc.
,
70
(
352
), pp.
913
922
.10.1080/01621459.1975.10480323
8.
Farewell
,
V. T.
,
1977
, “
A Model for a Binary Variable With Time-Censored Observations
,”
Biometrika
,
64
(
1
), pp.
43
46
.10.1093/biomet/64.1.43
9.
Steinhurst
,
W. R.
,
1981
, “
Hypothesis Tests for Limited Failure Survival Distributions
,”
Eval. Rev.
,
5
(
5
), pp.
699
711
.10.1177/0193841X8100500507
10.
Meeker
,
W.
,
1987
, “
Limited Failure Population Life Tests: Application to Integrated Circuit Reliability
,”
Technometrics
,
29
(
1
), pp.
51
65
.10.1080/00401706.1987.10488183
11.
Johnson
,
N. L.
,
1962
, “
Estimation of Sample Size
,”
Technometrics
,
4
(
1
), pp.
59
67
.10.1080/00401706.1962.10489987
12.
Sanathanan
,
L.
,
1972
, “
Estimating the Size of a Multinomial Population
,”
Ann. Math. Stat.
,
43
(
1
), pp.
142
152
.10.1214/aoms/1177692709
13.
Sanathanan
,
L.
,
1977
, “
Estimating the Size of a Truncated Sample
,”
J. Am. Stat. Assoc.
,
72
(
359
), pp.
669
672
.10.1080/01621459.1977.10480634
14.
Halperin
,
M.
,
1952
, “
Maximum Estimation in Truncated Samples
,”
Ann. Math. Stat.
,
23
(
2
), pp.
226
238
.10.1214/aoms/1177729439
15.
Epstein
,
B.
, and
Sobel
,
M.
,
1953
, “
Life Testing
,”
J. Am. Stat. Assoc.
,
48
(
263
), pp.
486
502
.10.1080/01621459.1953.10483488
16.
Deemer
,
L. D.
, and
Votaw
,
D. F.
,
1955
, “
Estimation of Parameters of Truncated or Censored Exponential Distributions
,”
Ann. Math. Stat.
,
26
(
3
), pp.
498
504
.10.1214/aoms/1177728494
17.
Cohen
,
A. C.
,
1965
, “
Maximum Likelihood Estimation in the Weibull Distribution Based on Complete and on Censored Samples
,”
Technometrics
,
7
(
4
), pp.
579
588
.10.1080/00401706.1965.10490300
18.
Mittal
,
M. M.
, and
Dahiya
,
R. C.
,
1987
, “
Estimating the Parameters of a Doubly Truncated Normal Distribution
,”
Commun. Stat. - Simul. Computation
,
16
(
1
), pp.
141
159
.10.1080/03610918708812582
19.
Wingo
,
D. R.
,
1988
, “
Parametric Point Estimation for a Doubly Truncated Weibull Distribution
,”
Microelectron. Reliab.
,
28
(
4
), pp.
613
617
.10.1016/0026-2714(88)90147-3
20.
Mittal
,
M. M.
, and
Dahiya
,
R. C.
,
1989
, “
Estimating the Parameters of a Truncated Weibull Distribution
,”
Commun. Stat.—Theory Methods
,
18
(
6
), pp.
2027
2042
.10.1080/03610928908830020
21.
Martinez
,
S.
,
1991
, “
On a Test for Generalized Upper Truncated Weibull Distributions
,”
Stat. Probab. Lett.
,
12
(
4
), pp.
273
279
.10.1016/0167-7152(91)90090-E
22.
Seki
,
T.
, and
Yokoyama
,
S.
,
1993
, “
Simple and Robust Estimation of the Weibull Parameters
,”
Microelectron. Reliab.
,
33
(
1
), pp.
45
52
.10.1016/0026-2714(93)90043-X
23.
Komori
,
Y.
, and
Hirose
,
H.
,
2002
, “
Parameter Estimation Based on Grouped or Continuous Data for Truncated Exponential Distributions
,”
Commun. Stat.—Theory Methods
,
31
(
6
), pp.
889
900
.10.1081/STA-120004188
24.
Dixit
,
U. J.
, and
Nasiri
,
P. N.
,
2007
, “
Estimation of Parameters of a Right Truncated Exponential Distribution
,”
Stat. Papers
,
49
(
2
), pp.
225
236
.10.1007/s00362-006-0008-5
25.
Meeker
,
W.
, and
Luis
,
E.
,
1998
,
Statistical Methods for Reliability Data
,
Wiley-Interscience
, New York.
26.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
27.
Zhang
,
T.
, and
Xie
,
M.
,
2011
, “
On the Upper Truncated Weibull Distribution and Its Reliability Implications
,”
Reliab. Eng. Syst. Saf.
,
96
(
1
), pp.
194
200
.10.1016/j.ress.2010.09.004
28.
Koutsellis
,
T.
,
Mourelatos
,
Z. P.
,
Hijawi
,
M.
,
Guo
,
H.
, and
Castanier
,
M.
,
2017
, “
Warranty Forecasting of Repairable Systems for Different Production Patterns
,”
SAE Int. J. Mater. Manuf.
,
10
(
3
), p.
264017
.10.4271/2017-01-0209
29.
Kijima
,
M.
, and
Sumita
,
U.
,
1986
, “
A Useful Generalization of Renewal Theory: Counting Processes Governed by Non-Negative Markovian Increments
,”
J. Appl. Probab.
,
23
(
1
), pp.
71
88
.10.2307/3214117
You do not currently have access to this content.