Abstract

Interface stiffness is an important factor influencing the performance of mechanical products. Uncertain factors affect the interface stiffness and stability in the process of product design, manufacture, and operation. How to reduce the impact of uncertain factors on the interface stiffness is a vital problem in interface design. In this paper, a robust optimal design method is proposed for mechanical interfaces considering uncertain factors, which combines the finite element simulation, experiment, and optimization to reduce the sensitivity of interface stiffness to uncertain factors. The proposed interface design method provides an effective way to improve the interface stiffness under uncertain conditions. In order to validate the proposed method, the bolted connection structure of a flange is applied as an example. The interface stiffness of the flange is selected as an optimization target, and the Gaussian process regression is used to construct a two-layer optimal model of the objective function for the design and uncertain parameters. When experimental and optimization results differ significantly, the Kalman filter is used to provide the feedback for the optimization results until the results meet requirements. The final results show that the optimized mechanical interface stiffness is increased by 15.5%, and the error between the optimized prediction and experimental results is within 1% after three times experimental validation and feedback adjustment.

References

1.
Burdekin
,
M.
,
Back
,
N.
, and
Cowley
,
A.
,
1979
, “
Analysis of the Local Deformations in Machine Joints
,”
J. Mech. Eng. Sci.
,
21
(
1
), pp.
25
32
.10.1243/JMES_JOUR_1979_021_006_02
2.
Scalice
,
R.
,
Andrade
,
L.
, and
Forcellini
,
F.
,
2008
, “
A Design Methodology for Module Interfaces
,”
Collaborative Product and Service Life Cycle Management for a Sustainable World
,
R.
Curran
,
S.
Chou
, and
A.
Trappey
, eds.,
Springer
,
London
, pp.
297
304
.
3.
Zhang
,
J.
,
Xue
,
G.
,
Du
,
H.
,
Garg
,
A.
,
Peng
,
Q.
, and
Gu
,
P.
,
2017
, “
Enhancing Interface Adaptability of Open Architecture Products
,”
Res. Eng. Des.
,
28
(
4
), pp.
545
560
.10.1007/s00163-017-0264-5
4.
Qu
,
C.
,
Wu
,
L.
,
Ma
,
J.
,
Xia
,
Q.
, and
Ma
,
S.
,
2013
, “
A Fractal Model of Normal Dynamic Parameters for Fixed Oily Porous Media Joint Interface in Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2159
2167
.10.1007/s00170-013-4825-0
5.
Zhang
,
J.
,
Li
,
S.
,
Bao
,
N.
,
Zhang
,
G.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
A Robust Design Approach to Determination of Tolerance of Mechanical Products
,”
CIRP Ann.-Manuf. Technol.
,
59
(
1
), pp.
195
198
.10.1016/j.cirp.2010.03.099
6.
Sun
,
D.
,
Shi
,
Y.
, and
Zhang
,
B.
,
2018
, “
Robust Optimization of Constrained Mechanical System With Joint Clearance and Random Parameters Using Multi-Objective Particle Swarm Optimization
,”
Struct. Multidiscip. Optim.
,
58
(
5
), pp.
2073
2084
.10.1007/s00158-018-2021-4
7.
Zhou
,
J.
,
Xu
,
M.
, and
Li
,
M.
,
2016
, “
Reliability-Based Design Optimization Concerning Objective Variation Under Mixed Probabilistic and Interval Uncertainties
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114501
.10.1115/1.4034346
8.
Shamoto
,
E.
,
Hashimoto
,
Y.
,
Shinagawa
,
M.
, and
Sencer
,
B.
,
2014
, “
Analytical Prediction of Contact Stiffness and Friction Damping in Bolted Connection
,”
CIRP Ann.-Manuf. Technol.
,
63
(
1
), pp.
353
356
.10.1016/j.cirp.2014.03.134
9.
Khan
,
M. A.
,
Kumar
,
S.
, and
Cantwell
,
W. J.
,
2018
, “
Additively Manufactured Cylindrical Systems with Stiffness-Tailored Interface: Modeling and Experiments
,”
Int. J. Solids Struct.
,
152-153
, pp.
71
84
.10.1016/j.ijsolstr.2018.06.002
10.
Ma
,
Y.
,
Xu
,
T.
, and
Qian
,
F.
,
2017
, “
Machine Tool Support Multi-Objective Robustness Design Under Uncertainties
,”
Comput. Integr. Manuf. Syst.
,
23
(
3
), pp.
482
487
.10.13196/j.cims.2017.03.005
11.
Zhao
,
M.
,
2013
, “
Modeling Method and Dynamic Characteristics of Bolt Joints
,” M.S. thesis, Northeastern University, Shenyang, China (in Chinese).
12.
Xi
,
Z.
,
2019
, “
Model-Based Reliability Analysis With Both Model Uncertainty and Parameter Uncertainty
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051404
.10.1115/1.4041946
13.
Sui
,
L.
,
Tian
,
X.
, and
Lu
,
T.
,
2012
, “
Static Characteristics and Cohesive Zone Model of Joint Surfaces in Machine Tools
,”
Chin. J. Solid Mech.
,
33
(
1
), pp.
48
57
(in Chinese).10.19636/j.cnki.cjsm42-1250/o3.2012.01.007
14.
Greenwood
,
J.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
633
.10.1243/PIME_PROC_1970_185_069_02
15.
Edward
,
C.
, and
Bogdan
,
D.
,
1999
, “
Modelling and Calculation of Properties of Sliding Guideways
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1823
1839
.10.1016/S0890-6955(99)00041-3
16.
Li
,
H.
,
Liu
,
H.
, and
Yu
,
L.
,
2011
, “
Contact Stiffness of Rough Mechanical Joint Surface
,”
J. Xi'an Jiaotong Univ.
,
45
(
6
), pp.
69
74
(in Chinese).
17.
Liu
,
H.
,
Liu
,
Y.
, and
Wang
,
W.
,
2011
, “
New Equivalent Method for Normal Stiffness of Contact Interface
,”
J. Mech. Eng.
,
47
(
17
), pp.
37
43
(in Chinese).10.3901/JME.2011.17.037
18.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.10.1098/rspa.1966.0242
19.
Whitehouse
,
D.
, and
Archard
,
J.
,
1970
, “
The Properties of Random Surface of Significances in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
316
(
1524
), pp.
97
121
.10.1098/rspa.1970.0068
20.
Onions
,
R.
, and
Archard
,
J.
,
1973
, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D
,
6
(
3
), pp.
289
304
.10.1088/0022-3727/6/3/302
21.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.10.1115/1.2920588
22.
Jiang
,
S.
,
Zheng
,
Y.
, and
Zhu
,
H.
,
2010
, “
A Contact Stiffness Model of Machined Plane Joint Based on Fractal Theory
,”
ASME J. Tribol.
,
132
(
1
), p.
011401
.10.1115/1.4000305
23.
ISO
,
1998
, “General Principles on Reliability for Structures,”
China Architecture & Building Press
,
Beijing, China
, Standard No. ISO:2394 (in Chinese).
24.
Wang
,
K.
,
Yang
,
D.
, and
Ma
,
D.
,
2013
, “
Multi-Objective Structure Optimization Design of a Car Lower Control Arm
,”
Adv. Mater. Res.
,
774–776
, pp.
420
427
.10.4028/www.scientific.net/AMR.774-776.420
25.
Yildiz
,
A.
,
2013
, “
Comparison of Evolutionary-Based Optimization Algorithms for Structural Design Optimization
,”
Eng. Appl. Artif. Intell.
,
26
(
1
), pp.
327
333
.10.1016/j.engappai.2012.05.014
26.
Xia
,
T.
,
Li
,
M.
, and
Zhou
,
J.
,
2016
, “
A Sequential Robust Optimization Approach for Multidisciplinary Design Optimization With Uncertainty
,”
ASME J. Mech. Des.
,
138
(
11
), p. 1
11406
.10.1115/1.4034113
27.
Lee
,
K.
, and
Park
,
G.
,
2001
, “
Robust Optimization Considering Tolerances of Design Variables
,”
Comput. Struct.
,
79
(
1
), pp.
77
86
.10.1016/S0045-7949(00)00117-6
28.
Papadrakakis
,
M.
, and
Lagaros
,
N.
,
2002
, “
Reliability-Based Structural Optimization Using Neural Networks and Monto Carlo Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
32
), pp.
3491
3507
.10.1016/S0045-7825(02)00287-6
29.
Hulsurkar
,
S.
,
Biswal
,
M.
, and
Sinha
,
S.
,
1997
, “
Fuzzy Programming Approach to Multi-Objective Stochastic Linear Programming Problems
,”
Fuzzy Sets Syst.
,
88
(
2
), pp.
173
181
.10.1016/S0165-0114(96)00056-5
30.
Zimmermann
,
H.
,
1978
, “
Fuzzy Programming and Linear Programming With Several Objective Functions
,”
Fuzzy Sets Syst.
,
1
(
1
), pp.
46
55
.10.1016/0165-0114(78)90031-3
31.
Jiang
,
C.
,
Han
,
X.
,
Guan
,
F.
, and
Li
,
Y.
,
2007
, “
An Uncertain Structural Optimization Method Based on Nonlinear Interval Number Programming and Interval Analysis Method
,”
Eng. Struct.
,
29
(
11
), pp.
3168
3177
.10.1016/j.engstruct.2007.01.020
32.
Gouttefarde
,
M.
,
Daney
,
D.
, and
Merlet
,
J.
,
2011
, “
Interval-Analysis-Based Determination of the Wrench-Feasible Workspace of Parallel Cable-Driven Robots
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
1
13
.10.1109/TRO.2010.2090064
33.
Guo
,
Q.
, and
Zhang
,
L.
,
2005
, “
Identification of the Mechanical Joint Parameters With Model Uncertainty
,”
Chin. J. Aeronaut.
,
18
(
1
), pp.
47
52
.10.1016/S1000-9361(11)60281-1
34.
Hanss
,
M.
,
Oexl
,
S.
, and
Gaul
,
L.
,
2002
, “
Identification of a Bolted-Joint Model With Fuzzy Parameters Normal to the Contact Interface
,”
Mech. Res. Commun.
,
29
(
2–3
), pp.
177
187
.10.1016/S0093-6413(02)00245-8
35.
Peng
,
Z.
, and
Liu
,
X.
,
2003
, “
A Fuzzy Method of Identifying Joint Parameters Mechanical Structure
,”
J. Beijing Univ. Posts Telecommun.
,
26
(
3
), pp.
12
16
(in Chinese).
36.
Liu
,
X.
, and
Peng
,
X.
,
2003
, “
Fuzzy Method of Identify Joint Parameters Based on Transfer Functions
,”
Precise Manuf. Autom.
, 10(
S1
), pp.
5
8
(in Chinese).
37.
He
,
C.
,
Chen
,
G.
, and
He
,
H.
,
2013
, “
Interval Model Updating and Validation With Uncertainty Based on the Radial Basis Function
,”
J. Mech. Eng.
,
49
(
11
), pp.
128
134
.10.3901/JME.2013.11.128
38.
Jiang
,
D.
,
Wu
,
S.
,
Shi
,
Q.
, and
Fei
,
Q.
,
2015
, “
Contact Interface Parameter Identification of Bolted Joint Structure With Uncertainty Using Thin Layer Element Method
,”
Eng. Mech.
,
32
(
4
), pp.
220
227
.
39.
Zhou
,
J.
,
Cheng
,
S.
, and
Li
,
M.
,
2012
, “
Sequential Quadratic Programming for Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100913
.10.1115/1.4007392
40.
Li
,
W.
,
Xiao
,
M.
, and
Gao
,
L.
,
2019
, “
Improved Collaboration Pursuing Method for Multidisciplinary Robust Design Optimization
,”
Struct. Multidiscip. Optim.
59(6), pp.
1949
1968
.10.1007/s00158-018-2165-2
41.
Cheng
,
J.
,
Tang
,
M.
,
Liu
,
Z.
, and
Tan
,
J.
,
2016
, “
Direct Reliability-Based Design Optimization of Uncertain Structures With Interval Parameters
,”
J. Zhejiang Univ., Sci.
,
17
(
11
), pp.
841
854
.10.1631/jzus.AA1600143
42.
Yang
,
H.
,
Fu
,
W.
,
Shi
,
B.
,
Wang
,
W.
,
Yang
,
S.
, and
Wang
,
W.
,
2011
, “
Modeling of Machined Joints Normal Stiffness Using Modified PSO-BP Neural Network Algorithm
,”
Trans. Chin. Soc. Agric. Mach.
,
42
(
3
), pp.
219
223
(in Chinese).
43.
Li
,
X.
,
2013
, “
Optimization Technique for Mechanical Properties of the Product Key Structure Based on Uncertainty and Its Typical Application
,” M.S. thesis, Zhejiang University, Hangzhou, China (in Chinese).
44.
Zhao
,
G.
,
Xiong
,
Z.
,
Jin
,
X.
,
Hou
,
L.
, and
Gao
,
W.
,
2018
, “
Prediction of Contact Stiffness in Bolted Interface With Natural Frequency Experiment and FE Analysis
,”
Tribol. Int.
,
127
, pp.
157
164
.10.1016/j.triboint.2018.05.044
45.
Guo
,
M.
, and
Hesthaven
,
J.
,
2018
, “
Reduced Order Modeling for Nonlinear Structural Analysis Using Gaussian Process Regression
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
807
826
.10.1016/j.cma.2018.07.017
46.
Zhao
,
B.
,
Zhang
,
S.
,
Man
,
J.
,
Zhang
,
Q.
, and
Chen
,
Y.
,
2015
, “
A Modified Normal Contact Stiffness Model Considering Effect of Surface Topography
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
6
), pp.
677
688
.10.1177/1350650114558099
47.
Shrivastava
,
A.
, and
Mohanty
,
A.
,
2018
, “
Estimation of Single Plane Unbalance Parameters of a Rotor-Bearing System Using Kalman Filtering Based Force Estimation Technique
,”
J. Sound Vib.
,
418
, pp.
184
199
.10.1016/j.jsv.2017.11.020
48.
Kalman
,
R.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng. Trans.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
49.
Moore
,
R. E.
,
Baker
,
K. R.
, and
Cloud
,
M. J.
,
2009
,
Introduction to Interval Analysis
,
SIAM
,
Philadelphia, PA
.
You do not currently have access to this content.