The development of robust and adaptable methods of grasping force optimization (GFO) is an important consideration for robotic devices, especially those which are designed to interact naturally with a variety of objects. Along with considerations for the computational efficiency of such methods, it is also important to ensure that a GFO approach chooses forces which can produce a stable grasp even in the presence of uncertainty. This paper examines the robustness of three methods of GFO in the presence of variability in the contact locations and in the coefficients of friction between the hand and the object. A Monte Carlo simulation is used to determine the resulting probability of failure and sensitivity levels when variability is introduced. Two numerical examples representing two common grasps performed by the human hand are used to demonstrate the performance of the optimization methods. Additionally, the method which yields the best overall performance is also tested to determine its consistency when force is applied to the object's center of mass in different directions. The results show that both the nonlinear and linear matrix inequality (LMIs) methods of GFO produce acceptable results, whereas the linear method produces unacceptably high probabilities of failure. Further, the nonlinear method continues to produce acceptable results even when the direction of the applied force is changed. Based on these results, the nonlinear method of GFO is considered to be robust in the presence of variability in the contact locations and coefficients of friction.
Skip Nav Destination
Article navigation
December 2018
Research-Article
Examining the Robustness of Grasping Force Optimization Methods Using Uncertainty Analysis
Aimee Cloutier,
Aimee Cloutier
Department of Mechanical Engineering,
Rose-Hulman Institute of Technology,
5500 Wabash Avenue,
Terre Haute, IN 47803
e-mail: cloutier@rose-hulman.edu
Rose-Hulman Institute of Technology,
5500 Wabash Avenue,
Terre Haute, IN 47803
e-mail: cloutier@rose-hulman.edu
Search for other works by this author on:
James Yang
James Yang
Mem. ASME
Department of Mechanical Engineering,
Human-Centric Design Research Lab,
Texas Tech University,
Lubbock, TX 79409
e-mail: james.yang@ttu.edu
Department of Mechanical Engineering,
Human-Centric Design Research Lab,
Texas Tech University,
Lubbock, TX 79409
e-mail: james.yang@ttu.edu
Search for other works by this author on:
Aimee Cloutier
Department of Mechanical Engineering,
Rose-Hulman Institute of Technology,
5500 Wabash Avenue,
Terre Haute, IN 47803
e-mail: cloutier@rose-hulman.edu
Rose-Hulman Institute of Technology,
5500 Wabash Avenue,
Terre Haute, IN 47803
e-mail: cloutier@rose-hulman.edu
James Yang
Mem. ASME
Department of Mechanical Engineering,
Human-Centric Design Research Lab,
Texas Tech University,
Lubbock, TX 79409
e-mail: james.yang@ttu.edu
Department of Mechanical Engineering,
Human-Centric Design Research Lab,
Texas Tech University,
Lubbock, TX 79409
e-mail: james.yang@ttu.edu
1Corresponding author.
Manuscript received June 17, 2017; final manuscript received February 19, 2018; published online April 30, 2018. Assoc. Editor: Faisal Khan.
ASME J. Risk Uncertainty Part B. Dec 2018, 4(4): 041007 (8 pages)
Published Online: April 30, 2018
Article history
Received:
June 17, 2017
Revised:
February 19, 2018
Citation
Cloutier, A., and Yang, J. (April 30, 2018). "Examining the Robustness of Grasping Force Optimization Methods Using Uncertainty Analysis." ASME. ASME J. Risk Uncertainty Part B. December 2018; 4(4): 041007. https://doi.org/10.1115/1.4039467
Download citation file:
Get Email Alerts
Cited By
Retracted: What Could Have Saved Fukushima From Its Severe Accident
ASME J. Risk Uncertainty Part B
Retracted: Remaining Useful Life Prediction Method of Aero Engine With Multilayer Uncertainty
ASME J. Risk Uncertainty Part B
Special Section on Decommissioning and Life Extension of Complex Industrial Assets
ASME J. Risk Uncertainty Part B (December 2022)
New Regulatory Instrument for Brazilian Decommissioning of Oil and Gas Installations
ASME J. Risk Uncertainty Part B (December 2022)
Related Articles
Uncertainty of Integral System Safety in Engineering
ASME J. Risk Uncertainty Part B (June,2022)
On Regularization in Design for Reliability for Nonlinear Planar Beam-Type Resonators
J. Vib. Acoust (August,2017)
Unified Uncertainty Analysis by the First Order Reliability Method
J. Mech. Des (September,2008)
Articles from Part A: Civil Engineering
Integrating Bayesian Linear Regression with Ordered Weighted Averaging: Uncertainty Analysis for Predicting Water Main Failures
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (September,2015)
Multilevel Decomposition Framework for Reliability Assessment of Assembled Stochastic Linear Structural Systems
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (March,2021)
A Practical Bayesian Framework for Structural Model Updating and Prediction
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (March,2022)
Bayesian Methodology for Probabilistic Description of Mechanical Parameters of Masonry Walls
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering (June,2021)
Related Proceedings Papers
Related Chapters
Model-Building for Robust Reinforcement Learning
Intelligent Engineering Systems through Artificial Neural Networks, Volume 20
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Updates, Revisions and Corrections to this Book
Supplement to Fluid Mechanics, Water Hammer, Dynamic Stresses, and Piping Design