Abstract

Optimization for crashworthiness is of vast importance in automobile industry. Recent advancement in computational prowess has enabled researchers and design engineers to address vehicle crashworthiness, resulting in reduction of cost and time for new product development. However, a deterministic optimum design often resides at the boundary of failure domain, leaving little or no room for modeling imperfections, parameter uncertainties, and/or human error. In this study, an operational model-based robust design optimization (RDO) scheme has been developed for designing crashworthiness of vehicle against side impact. Within this framework, differential evolution algorithm (DEA) has been coupled with polynomial correlated function expansion (PCFE). An adaptive framework for determining the optimum basis order in PCFE has also been presented. It is argued that the coupled DEA–PCFE is more efficient and accurate, as compared to conventional techniques. For RDO of vehicle against side impact, minimization of the weight and lower rib deflection of the vehicle are considered to be the primary design objectives. Case studies by providing various emphases on the two objectives have also been performed. For all the cases, DEA–PCFE is found to yield highly accurate results.

References

1.
Kurtaran
,
H.
,
Eskandarian
,
A.
,
Marzougui
,
D.
, and
Bedewi
,
N. E.
,
2002
, “
Crashworthiness Design Optimization Using Successive Response Surface Approximations
,”
Comput. Mech.
,
29
(
4–5
), pp.
409
421
.
2.
Avalle
,
M.
,
Chiandussi
,
G.
, and
Belingardi
,
G.
,
2002
, “
Design Optimization by Response Surface Methodology: Application to Crashworthiness Design of Vehicle Structures
,”
Struct. Multidiscip. Optim.
,
24
(
4
), pp.
325
332
.
3.
Duddeck
,
F.
,
2007
, “
Multidisciplinary Optimization of Car Bodies
,”
Struct. Multidiscip. Optim.
,
35
(
4
), pp.
375
389
.
4.
Fang
,
H.
,
Rais-Rohani
,
M.
,
Liu
,
Z.
, and
Horstemeyer
,
M.
,
2005
, “
A Comparative Study of Metamodeling Methods for Multiobjective Crashworthiness Optimization
,”
Comput. Struct.
,
83
(
25–26
), pp.
2121
2136
.
5.
Forsberg
,
J.
, and
Nilsson
,
L.
,
2006
, “
Evaluation of Response Surface Methodologies Used in Crashworthiness Optimization
,”
Int. J. Impact Eng.
,
32
(
5
), pp.
759
777
.
6.
Gu
,
L.
,
Yang
,
R.
,
Tho
,
C.
,
Makowskit
,
M.
,
Faruquet
,
O.
, and
Li
,
Y.
,
2004
, “
Optimisation and Robustness for Crashworthiness of Side Impact
,”
Int. J. Veh. Des.
,
26
(
4
), pp. 348–360.
7.
Hou
,
S.
,
Li
,
Q.
,
Long
,
S.
,
Yang
,
X.
, and
Li
,
W.
,
2008
, “
Multiobjective Optimization of Multi-Cell Sections for the Crashworthiness Design
,”
Int. J. Impact Eng.
,
35
(
11
), pp.
1355
1367
.
8.
Lee
,
S. H.
,
Chen
,
W.
, and
Kwak
,
B. M.
,
2008
, “
Robust Design With Arbitrary Distributions Using Gauss-Type Quadrature Formula
,”
Struct. Multidiscip. Optim.
,
39
(
3
), pp.
227
243
.
9.
Youn
,
B.
,
Choi
,
K.
,
Yang
,
R.-J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
10.
Chen
,
X.
,
Park
,
E. J.
, and
Xiu
,
D.
,
2013
, “
A Flexible Numerical Approach for Quantification of Epistemic Uncertainty
,”
J. Comput. Phys.
,
240
, pp.
211
224
.
11.
Jakeman
,
J.
,
Eldred
,
M.
, and
Xiu
,
D.
,
2010
, “
Numerical Approach for Quantification of Epistemic Uncertainty
,”
J. Comput. Phys.
,
229
(
12
), pp.
4648
4663
.
12.
Der Kiureghian
,
A.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
Struct. Saf.
,
31
(
2
), pp.
105
112
.
13.
Ross
,
J. L.
,
Ozbek
,
M. M.
, and
Pinder
,
G. F.
,
2009
, “
Aleatoric and Epistemic Uncertainty in Groundwater Flow and Transport Simulation
,”
Water Resour. Res.
,
45
(
12
), p. W00b15.
14.
Huang
,
B.
, and
Du
,
X.
,
2007
, “
Analytical Robustness Assessment for Robust Design
,”
Struct. Multidiscip. Optim.
,
34
(
2
), pp.
123
137
.
15.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
326
.
16.
Youn
,
B. D.
, and
Xi
,
Z.
,
2008
, “
Reliability-Based Robust Design Optimization Using the Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
,
37
(
5
), pp.
475
492
.
17.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.
18.
Dubourg
,
V.
,
2011
, “
Adaptive Surrogate Models for Reliability Analysis and Reliability-Based-Design-Optimization
,”
Ph.D. thesis
, Blaise Pascal University Clermont II, Clermont-Ferrand, France.https://tel.archives-ouvertes.fr/tel-00697026/
19.
Dubourg
,
V.
,
Sudret
,
B.
, and
Deheeger
,
F.
,
2013
, “
Metamodel-Based Importance Sampling for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
33
, pp.
47
57
.
20.
Debbarma
,
R.
,
Chakraborty
,
S.
, and
Ghosh
,
S.
,
2010
, “
Unconditional Reliability-Based Design of Tuned Liquid Column Dampers Under Stochastic Earthquake Load Considering System Parameters Uncertainties
,”
J. Earthquake Eng.
,
14
(
7
), pp.
970
988
.
21.
Marczyk
,
J.
,
2000
, “
Stochastic Multidisciplinary Improvement: Beyond Optimization
,”
AIAA
Paper No. 2000-4929.
22.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
van Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
23.
Fang
,
J.
,
Gao
,
Y.
,
Sun
,
G.
,
Xu
,
C.
, and
Li
,
Q.
,
2015
, “
Multiobjective Robust Design Optimization of Fatigue Life for a Truck Cab
,”
Reliab. Eng. Syst. Saf.
,
135
, pp.
1
8
.
24.
Diez
,
M.
, and
Peri
,
D.
,
2010
, “
Robust Optimization for Ship Concept Design
,”
Ocean Eng.
,
37
(11–12), pp.
966
977
.
25.
Roy
,
B. K.
, and
Chakraborty
,
S.
,
2015
, “
Robust Optimum Design of Base Isolation System in Seismic Vibration Control of Structures Under Random System Parameters
,”
Struct. Saf.
,
55
, pp.
49
59
.
26.
Roy
,
B. K.
,
Chakraborty
,
S.
, and
Mihsra
,
S. K.
,
2012
, “
Robust Optimum Design of Base Isolation System in Seismic Vibration Control of Structures Under Uncertain Bounded System Parameters
,”
J. Vib. Control
,
20
(
5
), pp.
786
800
.
27.
Gerstl
,
S.
,
1973
, “
Second-Order Perturbation-Theory and Its Application to Sensitivity Studies in Shield Design Calculations
,”
Trans. Am. Nucl. Soc.
,
16
, pp.
342
343
.https://www.osti.gov/scitech/biblio/4474876
28.
Kamiski
,
M.
,
2004
, “
Stochastic Perturbation Approach to the Wavelet-Based Analysis
,”
Numer. Linear Algebra Appl.
,
11
(
4
), pp.
355
370
.
29.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
30.
Echard
,
B.
,
Gayton
,
N.
,
Lemaire
,
M.
, and
Relun
,
N.
,
2013
, “
A Combined Importance Sampling and Kriging Reliability Method for Small Failure Probabilities With Time-Demanding Numerical Models
,”
Reliab. Eng. Syst. Saf.
,
111
, pp.
232
240
.
31.
Kaymaz
,
I.
,
2005
, “
Application of Kriging Method to Structural Reliability Problems
,”
Struct. Saf.
,
27
(
2
), pp.
133
151
.
32.
Ng
,
S. H.
, and
Yin
,
J.
,
2013
, “
Bayesian Kriging Analysis and Design for Stochastic Simulations
,”
ACM Trans. Model. Comput. Simul.
,
22
(
3
), p. 17.
33.
Zhao
,
W.
,
Liu
,
J. K.
,
Li
,
X. Y.
,
Yang
,
Q. W.
, and
Chen
,
Y. Y.
,
2013
, “
A Moving Kriging Interpolation Response Surface Method for Structural Reliability Analysis
,”
Comput. Model. Eng. Sci.
,
93
(
6
), pp.
469
488
.
34.
Mukhopadhyay
,
T.
,
Chakraborty
,
S.
,
Dey
,
S.
,
Adhikari
,
S.
, and
Chowdhury
,
R.
,
2016
, “
A Critical Assessment of Kriging Model Variants for High-Fidelity Uncertainty Quantification in Dynamics of Composite Shells
,”
Arch. Comput. Methods Eng.
, (in press).
35.
Desai
,
A.
,
Witteveen
,
J. A. S.
, and
Sarkar
,
S.
,
2013
, “
Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation
,”
ASME J. Vib. Acoust.
,
135
(
5
), p. 051034.
36.
Jacquelin
,
E.
,
Adhikari
,
S.
,
Sinou
,
J.
, and
Friswell
,
M. I.
,
2014
, “
Polynomial Chaos Expansion and Steady-State Response of a Class of Random Dynamical Systems
,”
J. Eng. Mech.
,
141
(
4
), pp.
1
11
.
37.
Pascual
,
B.
, and
Adhikari
,
S.
,
2012
, “
A Reduced Polynomial Chaos Expansion Method for the Stochastic Finite Element Analysis
,”
Sadhana-Acad. Proc. Eng. Sci.
,
37
(
3
), pp.
319
340
.
38.
Pascual
,
B.
, and
Adhikari
,
S.
,
2012
, “
Combined Parametric-Nonparametric Uncertainty Quantification Using Random Matrix Theory and Polynomial Chaos Expansion
,”
Comput. Struct.
,
112–113
, pp.
364
379
.
39.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
40.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
41.
Hu
,
C.
, and
Youn
,
B. D.
,
2010
, “
Adaptive-Sparse Polynomial Chaos Expansion for Reliability Analysis and Design of Complex Engineering Systems
,”
Struct. Multidiscip. Optim.
,
43
(
3
), pp.
419
442
.
42.
Wei
,
D.
,
Cui
,
Z.
, and
Chen
,
J.
,
2008
, “
Uncertainty Quantification Using Polynomial Chaos Expansion With Points of Monomial Cubature Rules
,”
Comput. Struct.
,
86
(
23–24
), pp.
2102
2108
.
43.
Goswami
,
S.
, and
Chakraborty
,
S.
,
2016
, “
An Efficient Adaptive Response Surface Method for Reliability Analysis of Structures
,”
Struct. Saf.
,
60
, pp. 56–66.
44.
Kang
,
S.-C.
,
Koh
,
H.-M.
, and
Choo
,
J. F.
,
2010
, “
An Efficient Response Surface Method Using Moving Least Squares Approximation for Structural Reliability Analysis
,”
Probab. Eng. Mech.
,
25
(
4
), pp.
365
371
.
45.
Li
,
J.
,
Wang
,
H.
, and
Kim
,
N. H.
,
2012
, “
Doubly Weighted Moving Least Squares and Its Application to Structural Reliability Analysis
,”
Struct. Multidiscip. Optim.
,
46
(
1
), pp.
69
82
.
46.
Taflanidis
,
A. A.
, and
Cheung
,
S.-H.
,
2012
, “
Stochastic Sampling Using Moving Least Squares Response Surface Approximations
,”
Probab. Eng. Mech.
,
28
, pp.
216
224
.
47.
Xiong
,
F.
,
Greene
,
S.
,
Chen
,
W.
,
Xiong
,
Y.
, and
Yang
,
S.
,
2009
, “
A New Sparse Grid Based Method for Uncertainty Propagation
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
335
349
.
48.
Hu
,
C.
, and
Youn
,
B. D.
,
2011
, “
An Asymmetric Dimension-Adaptive Tensor-Product Method for Reliability Analysis
,”
Struct. Saf.
,
33
(
3
), pp.
218
231
.
49.
Bollig
,
E. F.
,
Flyer
,
N.
, and
Erlebacher
,
G.
,
2012
, “
Solution to PDEs Using Radial Basis Function Finite-Differences (RBF-FD) on Multiple GPUs
,”
J. Comput. Phys.
,
231
(
21
), pp.
7133
7151
.
50.
Deng
,
J.
,
Gu
,
D.
,
Li
,
X.
, and
Yue
,
Z. Q.
,
2005
, “
Structural Reliability Analysis for Implicit Performance Functions Using Artificial Neural Network
,”
Struct. Saf.
,
27
(
1
), pp.
25
48
.
51.
Jamshidi
,
A. A.
, and
Kirby
,
M. J.
,
2010
, “
Skew-Radial Basis Function Expansions for Empirical Modeling
,”
SIAM J. Sci. Comput.
,
31
(
6
), pp.
4715
4743
.
52.
Lazzaro
,
D.
, and
Montefusco
,
L. B.
,
2002
, “
Radial Basis Functions for the Multivariate Interpolation of Large Scattered Data Sets
,”
J. Comput. Appl. Math.
,
140
(
1–2
), pp.
521
536
.
53.
Marchi
,
S. D.
, and
Santin
,
G.
,
2013
, “
A New Stable Basis for Radial Basis Function Interpolation
,”
J. Comput. Appl. Math.
,
253
, pp.
1
13
.
54.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2016
, “
Assessment of Polynomial Correlated Function Expansion for High-Fidelity Structural Reliability Analysis
,”
Struct. Saf.
,
59
, pp.
9
19
.
55.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2015
, “
A Semi-Analytical Framework for Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
289
(
1
), pp.
475
497
.
56.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2016
, “
Modelling Uncertainty in Incompressible Flow Simulation Using Galerkin Based Generalised ANOVA
,”
Comput. Phys. Commun.
,
208
, pp.
73
91
.
57.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2016
, “
Sequential Experimental Design Based Generalised ANOVA
,”
J. Comput. Phys.
,
317
, pp.
15
32
.
58.
Chakraborty
,
S.
,
Mandal
,
B.
,
Chowdhury
,
R.
, and
Chakrabarti
,
A.
,
2016
, “
Stochastic Free Vibration Analysis of Laminated Composite Plates Using Polynomial Correlated Function Expansion
,”
Compos. Struct.
,
135
, pp.
236
249
.
59.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2015
, “
Polynomial Correlated Function Expansion for Nonlinear Stochastic Dynamic Analysis
,”
J. Eng. Mech.
,
141
(
3
), p.
04014132
.
60.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2017
, “
Polynomial Correlated Function Expansion
,”
Modeling and Simulation Techniques in Structural Engineering
,
IGI Global
, Hershey, PA, pp.
348
373
.
61.
Hooker
,
G.
,
2007
, “
Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables
,”
J. Comput. Graphical Stat.
,
16
(
3
), pp.
709
732
.
62.
Li
,
G.
, and
Rabitz
,
H.
,
2012
, “
General Formulation of HDMR Component Functions With Independent and Correlated Variables
,”
J. Math. Chem.
,
50
(
1
), pp.
99
130
.
63.
Biswas
,
S.
,
Kundu
,
S.
, and
Das
,
S.
,
2015
, “
Inducing Niching Behavior in Differential Evolution Through Local Information Sharing
,”
IEEE Trans. Evol. Comput.
,
19
(
2
), pp.
246
263
.
64.
Das
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
Differential Evolution: A Survey of the State-of-the-Art
,”
IEEE Trans. Evol. Comput.
,
15
(
1
), pp.
4
31
.
65.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution–A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
,
11
, pp.
341
359
.
66.
Stutz
,
L. T.
,
Tenenbaum
,
R. A.
, and
Correa
,
R. A. P.
,
2015
, “
The Differential Evolution Method Applied to Continuum Damage Identification Via Flexibility Matrix
,”
J. Sound Vib.
,
345
, pp.
86
102
.
67.
Beyer
,
H. G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization–A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33–34
), pp.
3190
3218
.
68.
Chen
,
W.
,
Allen
,
J.
,
Tsui
,
K.
, and
Mistree
,
F.
,
1996
, “
Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
69.
Park
,
G.
,
Lee
,
T.
,
Kwon
,
H.
, and
Hwang
,
K.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
70.
Schuëller
,
G.
, and
Jensen
,
H.
,
2008
, “
Computational Methods in Optimization Considering Uncertainties An Overview
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
2
13
.
71.
De Groot
,
M.
,
1970
,
Optimal Statistical Decisions
,
McGraw-Hill
,
New York
.
72.
Taguchi
,
G.
,
1986
,
Quality Engineering Through Design Optimization
,
Krauss International Publications
,
White Plains, NY
.
73.
Doltsinis
,
I.
, and
Kang
,
Z.
,
2004
, “
Robust Design of Structures Using Optimization Methods
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
23–26
), pp.
2221
2237
.
74.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2015
, “
Multivariate Function Approximations Using D-MORPH Algorithm
,”
Appl. Math. Model.
,
39
(
23–24
), pp.
7155
7180
.
75.
Alis
,
O. F.
, and
Rabitz
,
H.
,
2001
, “
Efficient Implementation of High Dimensional Model Representations
,”
J. Math. Chem.
,
29
(
2
), pp.
127
142
.
76.
Rabitz
,
H.
, and
Ali
,
Ö. F.
,
1999
, “
General Foundations of High Dimensional Model Representations
,”
J. Math. Chem.
,
25
(
2–3
), pp.
197
233
.
77.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Model.
,
2
(
1
), pp.
112
118
.http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mm&paperid=2320&option_lang=eng
78.
Li
,
G.
,
Rey-de Castro
,
R.
, and
Rabitz
,
H.
,
2012
, “
D-MORPH Regression for Modeling With Fewer Unknown Parameters Than Observation Data
,”
J. Math. Chem.
,
50
(
7
), pp.
1747
1764
.
79.
Li
,
G.
, and
Rabitz
,
H.
,
2010
, “
D-MORPH Regression: Application to Modeling With Unknown Parameters More Than Observation Data
,”
J. Math. Chem.
,
48
(
4
), pp.
1010
1035
.
80.
Rao
,
C.
, and
Mitra
,
S. K.
,
1971
,
Generalized Inverse of Matrix and Its Applications
,
Wiley
,
New York
.
81.
Ma
,
X.
, and
Zabaras
,
N.
,
2010
, “
An Adaptive High-Dimensional Stochastic Model Representation Technique for the Solution of Stochastic Partial Differential Equations
,”
J. Comput. Phys.
,
229
(
10
), pp.
3884
3915
.
82.
Ren
,
X.
, and
Rahman
,
S.
,
2013
, “
Robust Design Optimization by Polynomial Dimensional Decomposition
,”
Struct. Multidiscip. Optim.
,
48
(1), pp.
127
148
.
83.
Heiss
,
F.
, and
Winschel
,
V.
,
2008
, “
Likelihood Approximation by Numerical Integration on Sparse Grids
,”
J. Econometrics
,
144
(
1
), pp.
62
80
.
84.
Lee
,
I.
,
Choi
,
K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Dimension Reduction Method for Reliability-Based Robust Design Optimization
,”
Comput. Struct.
,
86
(
13–14
), pp.
1550
1562
.
85.
Bratley
,
P.
, and
Fox
,
B. L.
,
1988
, “
Implementing Sobols Quasirandom Sequence Generator
,”
ACM Trans. Math. Software
,
14
(
1
), pp.
88
100
.
86.
Sobol
, I
. M.
,
1976
, “
Uniformly Distributed Sequences With an Additional Uniform Property
,”
USSR Comput. Math. Math. Phys.
,
16
(5), pp.
236
242
.
You do not currently have access to this content.