Abstract

The offshore industry has actively sought technological solutions that reduce CO2 emissions from platform operations. One of the possible solutions being studied is the implementation of Power Hubs, which would generate electricity and distribute it to nearby platforms. Unlike the traditional approach, in which the electricity is generated in the platform for its operation, centralizing such generation via Power Hubs can make the process more efficient, reducing CO2 emissions. However, such a configuration increases the complexity of the operation and can impact the reliability and availability of platforms connected to the Power Hub. Therefore, this work aims to perform reliability and availability estimates of this type of operational configuration and compare it with the traditional offshore operation to quantify the difference between them. Various kinds of Power Hubs configurations were also analyzed to compare the results obtained. Such analyzes were performed using Generalized Stochastic Petri Nets (GSPNs) models. Results show that, depending on their configurations, Power Hubs can guarantee an average availability of energy generation close to 100% even in periods of higher demand for oil and gas production.

References

1.
U.S. Energy Information Administration
,
2015
, “
Offshore Production Nearly 30% of Global Crude Oil Output in 2015
,” U.S. Energy Information Administration, Washington DC, accessed Jan. 16, 2022, https://www.eia.gov/todayinenergy/detail.php?id=28492
2.
ANP
,
2018
, “
Opportunities of the Petroleum and Gas Sector in Brazil: Ongoing Endeavors and Auctions 2018–2019
,”
National Agency of Petroleum, Natural Gas and Biofuels
, Rio de Janeiro, Brazil.
3.
Word Oil
,
2021
, “
Brazil Projected to Supply Nearly a Quarter of World's Offshore Oil by 2025
,” Gulf Publishing Company LLC, Houston, TX, accessed Jan. 16, 2022, https://www.worldoil.com/news/2021/8/12/brazil-projected-to-supply-nearly-a-quarter-of-world-s-offshore-oil-by-2025
4.
Myklebust
,
H.
,
Eriksson
,
K.
,
Westman
,
B.
, and
Persson
,
G.
,
2017
, “
Valhall Power From Shore After Five Years of Operation
,” Proceedings of the 2017 Petroleum and Chemical Industry Conference Europe (
PCIC Europe
), Vienna, Austria, May 16–18, pp.
1
4
.10.23919/PCICEurope.2017.8015056
5.
Vidoza
,
J. A.
,
Andreasen
,
J. G.
,
Haglind
,
F.
,
dos Reis
,
M. M. L.
, and
Gallo
,
W.
,
2019
, “
Design and Optimization of Power Hubs for Brazilian Off-Shore Oil Production Units
,”
Energy
,
176
, pp.
656
666
.10.1016/j.energy.2019.04.022
6.
Freire
,
R. L. A.
, and
Oliveira
,
S.
, Jr.
,
2019
, “
Technical and Economic Assessment of Power Hubs for Offshore Oil and Gas Application
,” Proceedings of the
32th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems—ECOS 201
, Wroclaw, Poland, June 23–28, pp.
1
8
.
7.
Flórez-Orrego
,
D.
,
Freire
,
R. A.
,
da Silva
,
J. A. M.
,
Albuquerque Neto
,
C.
, and
de Oliveira Junior
,
S.
,
2022
, “
Centralized Power Generation With Carbon Capture on Decommissioned Offshore Petroleum Platforms
,”
Energy Convers. Manage.
,
252
, p.
115110
.10.1016/j.enconman.2021.115110
8.
Roussanaly
,
S.
,
Aasen
,
A.
,
Anantharaman
,
R.
,
Danielsen
,
B.
,
Jakobsen
,
J.
,
Heme-De-Lacotte
,
L.
,
Neji
,
G.
,
Sødal
,
A.
,
Wahl
,
P. E.
,
Vrana
,
T. K.
, and
Dreux
,
R.
,
2019
, “
Offshore Power Generation With Carbon Capture and Storage to Decarbonise Mainland Electricity and Offshore Oil and Gas Installations: A Techno-Economic Analysis
,”
Appl. Energy
,
233–234
, pp.
478
494
.10.1016/j.apenergy.2018.10.020
9.
Hetland
,
J.
,
Kvamsdal
,
H. M.
,
Haugen
,
G.
,
Major
,
F.
,
Kårstad
,
V.
, and
Tjellander
,
G.
,
2009
, “
Integrating a Full Carbon Capture Scheme Onto a 450 MWe NGCC Electric Power Generation Hub for Offshore Operations: Presenting the Sevan GTW Concept
,”
Appl. Energy
,
86
(
11
), pp.
2298
2307
.10.1016/j.apenergy.2009.03.019
10.
Casisi
,
M.
,
Pinamonti
,
P.
, and
Reini
,
M.
,
2009
, “
Optimal Lay-Out and Operation of Combined Heat & Power (CHP) Distributed Generation Systems
,”
Energy
,
34
(
12
), pp.
2175
2183
.10.1016/j.energy.2008.10.019
11.
Sanaye
,
S.
, and
Ardali
,
M. R.
,
2009
, “
Estimating the Power and Number of Microturbines in Small-Scale Combined Heat and Power Systems
,”
Appl. Energy
,
86
(
6
), pp.
895
903
.10.1016/j.apenergy.2008.11.015
12.
Flórez-Orrego
,
D.
,
Albuquerque
,
C.
,
da Silva
,
J. A. M.
,
Freire
,
R. L. A.
, and
de Oliveira Junior
,
S.
,
2021
, “
Optimal Design of Power Hubs for Offshore Petroleum Platforms
,”
Energy
,
235
, p.
121353
.10.1016/j.energy.2021.121353
13.
Gu
,
T.
, and
Bahri
,
P. A.
,
2002
, “
A Survey of Petri Net Applications in Batch Processes
,”
Comput. Ind.
,
47
(
1
), pp.
99
111
.10.1016/S0166-3615(01)00142-7
14.
Murata
,
T.
,
1989
, “
Petri Nets: Properties, Analysis and Applications
,”
Proc. IEEE
,
77
(
4
), pp.
541
580
.10.1109/5.24143
15.
Melani
,
A. H. A.
,
Murad
,
C. A.
,
Caminada Netto
,
A.
,
Souza
,
G. F. M.
, and
Nabeta
,
S. I.
,
2019
, “
Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower Through Generalized Stochastic Petri Nets
,”
Energies (Basel)
,
12
(
10
), p.
1951
.10.3390/en12101951
16.
Marsan
,
M. A.
,
1990
, “
Stochastic Petri Nets: An Elementary Introduction
,”
Advances in Petri Nets 1989
,
Springer
,
Berlin, Germany
, pp.
1
29
.
17.
Kang
,
C. W.
,
Imran
,
M.
,
Omair
,
M.
,
Ahmed
,
W.
,
Ullah
,
M.
, and
Sarkar
,
B.
,
2019
, “
Stochastic-Petri Net Modeling and Optimization for Outdoor Patients in Building Sustainable Healthcare System Considering Staff Absenteeism
,”
Mathematics
,
7
(
6
), p.
499
.10.3390/math7060499
18.
Schmidt
,
M.
,
Weik
,
N.
,
Zieger
,
S.
,
Schmeink
,
A.
, and
Niesen
,
N.
,
2019
, “
A Generalized Stochastic Petri Net Model for Performance Analysis of Trackside Infrastructure in Railway Station Areas Under Uncertainty
,” Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (
ITSC
),
Auckland, New Zealand
, Oct. 27–30, pp.
3732
–373
7
.10.1109/ITSC.2019.8917459
19.
Dingle
,
N. J.
, and
Knottenbelt
,
W. J.
,
2009
, “
Automated Customer-Centric Performance Analysis of Generalised Stochastic Petri Nets Using Tagged Tokens
,”
Electron. Notes Theor. Comput. Sci.
,
232
, pp.
75
88
.10.1016/j.entcs.2009.02.051
20.
Peng
,
L.
,
Xie
,
P.
,
Tang
,
Z.
, and
Liu
,
F.
,
2021
, “
Modeling and Analyzing Transmission of Infectious Diseases Using Generalized Stochastic Petri Nets
,”
Appl. Sci.
,
11
(
18
), p.
8400
.10.3390/app11188400
21.
Mahdi
,
I.
,
Chalah
,
S.
, and
Nadji
,
B.
,
2017
, “
Reliability Study of a System Dedicated to Renewable Energies by Using Stochastic Petri Nets: Application to Photovoltaic (PV) System
,”
Energy Procedia
,
136
, pp.
513
520
.10.1016/j.egypro.2017.10.276
22.
Melani
,
A. H. A.
,
Caminada Netto
,
A.
,
Murad
,
C. A.
,
Souza
,
G. F. M.
, and
Nabeta
,
S. I.
,
2018
, “
Petri Net Based Reliability Analysis of Thermoelectric Plant Cooling Tower System: Effects of Operational Strategies on System Reliability and Availability
,”
Proceedings of the Joint ICVRAM ISUMA UNCERTAINTIES Conference
,
Florianópolis, SC, Brazil
, Apr. 8–11, pp.
1
13
.
23.
Melani
,
A. H. A.
,
Silva
,
J. M.
,
de Souza
,
G. F. M.
, and
Silva
,
J. R.
,
2016
, “
Fault Diagnosis Based on Petri Nets: The Case Study of a Hydropower Plant
,”
IFAC-PapersOnLine
,
49
(
31
), pp.
1
6
.10.1016/j.ifacol.2016.12.152
24.
Mansour
,
M. M.
,
Wahab
,
M. A. A.
, and
Soliman
,
W. M.
,
2013
, “
Petri Nets for Fault Diagnosis of Large Power Generation Station
,”
Ain Shams Eng. J.
,
4
(
4
), pp.
831
842
.10.1016/j.asej.2013.04.006
25.
Melani
,
A. D. A.
,
Michalski
,
M. D. C.
,
Murad
,
C. A.
,
Caminada Netto
,
A.
, and
de Souza
,
G. F. M.
,
2022
, “
Generalized Stochastic Petri Nets for Planning and Optimizing Maintenance Logistics of Small Hydroelectric Power Plants
,”
Energies (Basel)
,
15
(
8
), p.
2742
.10.3390/en15082742
26.
Chang
,
C.-K.
, and
Hsiang
,
C.-L.
,
2010
, “
An Optimal Maintenance Policy Based on Generalized Stochastic Petri Nets and Periodic Inspection
,”
Asian J. Control
,
12
(
3
), pp.
364
376
.10.1002/asjc.216
27.
Santos
,
F. P.
,
Teixeira
,
A. P.
, and
Guedes Soares
,
C.
,
2018
, “
Maintenance Planning of an Offshore Wind Turbine Using Stochastic Petri Nets With Predicates
,”
ASME J. Offshore Mech. Arct. Eng.
,
140
(
2
), p.
021904
.10.1115/1.4038934
28.
Batelić
,
J.
,
Griparić
,
K.
, and
Matika
,
D.
,
2021
, “
Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets
,”
Energies (Basel)
,
14
(
18
), p.
5682
.10.3390/en14185682
29.
Elusakin
,
T.
,
Shafiee
,
M.
,
Adedipe
,
T.
, and
Dinmohammadi
,
F.
,
2021
, “
A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines
,”
Energies (Basel)
,
14
(
4
), p.
1134
.10.3390/en14041134
30.
Santos
,
F. P.
,
Teixeira
,
Â. P.
, and
Soares
,
C. G.
,
2019
, “
Modeling, Simulation and Optimization of Maintenance Cost Aspects on Multi-Unit Systems by Stochastic Petri Nets With Predicates
,”
Simulation
,
95
(
5
), pp.
461
478
.10.1177/0037549718782655
31.
Beirong
,
Z.
,
Xiaowen
,
X.
, and
Wei
,
X.
,
2012
, “
Availability Modeling and Analysis of Equipment Based on Generalized Stochastic Petri Nets
,”
Res. J. Appl. Sci., Eng. Technol.
,
4
(
21
), pp.
4362
4366
.https://maxwellsci.com/jp/abstract.php?jid=RJASET&no=228&abs=24
32.
Thangamani
,
G.
,
2012
, “
Generalized Stochastic Petri Nets for Reliability Analysis of Lube Oil System With Common-Cause Failures
,”
Am. J. Comput. Appl. Math.
,
2
(
4
), pp.
152
158
.10.5923/j.ajcam.20120204.03
33.
Volovoi
,
V
,
Kavalieratos
,
G
,
Waters
,
M
, and
Mavris
,
D
,
2004
, “Modeling the Reliability of Distribution Systems Using Petri Nets,”
11th International Conference on Harmonics and Quality of Power
, Lake Placid, NY, Sept. 12–15, IEEE, pp.
567
572
.10.1109/ICHQP.2004.1409416
34.
Marek
,
O.
,
2021
, “
Generating Petri Nets for Reliability Analysis of Smart Grids From UML Diagrams
,” Master's thesis,
Masaryk University
,
Brno, Czech Republic
.
35.
Gerogiannis
,
V. C.
,
Kameas
,
A. D.
, and
Pintelas
,
P. E.
,
1998
, “
Comparative Study and Categorization of High-Level Petri Nets
,”
J. Syst. Software
,
43
(
2
), pp.
133
160
.10.1016/S0164-1212(98)10028-6
36.
Zhu
,
H.
, and
He
,
X.
,
2002
, “
A Methodology of Testing High-Level Petri Nets
,”
Inf. Software Technol.
,
44
(
8
), pp.
473
489
.10.1016/S0950-5849(02)00048-4
37.
MacIver
,
C.
, and
Bell
,
K.
,
2014
, “
Reliability Analysis of Design Options for Offshore HVDC Networks
,”
CIGRE 2014
, Paris, France, Aug. 24–29, pp.
1
12
.https://www.researchgate.net/publication/305755369_Reliability_Analysis_of_Design_Options_for_Offshore_HVDC_Networks
38.
EPRI
,
1981
, “
Component Failure and Repair Data for Coal-Fired Power Units
,”
Electric Power Research Institute
,
Palo Alto, CA
.
39.
IAEA
,
1988
, “
Component Reliability Data for Use in Probabilistic Safety Assessment
,”
International Atomic Energy Agency
,
Vienna, Austria
.
40.
OREDA
,
2009
,
Offshore Reliability Data Handbook
, 4th ed.,
Det Norske Veritas
,
Hovik, Norway
.
41.
SATODEV
, 2018, “
GRIF Software 2018
,” Satodev Safety Tools Development, Merignac, France, accessed Jan. 31, 2019, https://www.satodev.com/
You do not currently have access to this content.