Abstract

The krill herd (KH) algorithm is widely used for optimizing truss structures as no gradient information is necessary, and only a few parameters require adjustment. However, when the truss structure becomes discrete and complex, KH tends to fall into a local optimum. Therefore, a novel target-oriented KH (TOKH) algorithm is proposed in this study to optimize the design of discrete truss structures. Initially, a crossover operator is established between the “best krill” and “suboptimal krill” to generate a robust “cross krill” for global exploration. Additionally, an improved local mutation and crossover (ILMC) operator is introduced to fine-tune the “center of food” and candidate solutions for local exploitation. The proposed method and other optimization approaches are experimentally compared considering 15 benchmark functions. Then, the performance of the TOKH algorithm is evaluated based on four discrete truss structure optimization problems under multiple loading conditions. The obtained optimization results indicate that the proposed method presents competitive solutions in terms of accuracy, unlike other algorithms in the literature, and avoids falling into a local minimum.

TOKH algorithm flowchart

TOKH algorithm flowchart

Close modal

References

1.
Kaveh
,
A.
, and
Talatahari
,
S.
,
2009
, “
A Particle Swarm Ant Colony Optimization for Truss Structures With Discrete Variables
,”
J. Constr. Steel.
,
65
(
8–9
), pp.
1558
1568
.10.1016/j.jcsr.2009.04.021
2.
Li
,
L. J.
,
Huang
,
Z. B.
, and
Liu
,
F.
,
2009
, “
A Heuristic Particle Swarm Optimization Method for Truss Structures With Discrete Variables
,”
Comput. Struct.
,
87
(
7–8
), pp.
435
443
.10.1016/j.compstruc.2009.01.004
3.
Gandomi
,
A. H.
,
Yun
,
G. J.
,
Yang
,
X. S.
, and
Talatahari
,
S.
,
2013
, “
Chaos-Enhanced Accelerated Particle Swarm Optimization
,”
Commun Nonlinear Sci. Numer. Simul.
,
18
(
2
), pp.
327
340
.10.1016/j.cnsns.2012.07.017
4.
Yang
,
X. S.
,
2010
,
Nature-Inspired Metaheuristic Algorithms
,
Luniver Press
,
UK
.
5.
Benzo
,
P. G.
,
Pereira
,
J. M.
, and
Sena-Cruz
,
J.
,
2022
, “
Optimization of Steel Web Core Sandwich Panel With Genetic Algorithm
,”
Eng. Struct.
,
253
, p.
113805
.10.1016/j.engstruct.2021.113805
6.
Korus
,
K.
,
Salamak
,
M.
, and
Jasiński
,
M.
,
2021
, “
Optimization of Geometric Parameters of Arch Bridges Using Visual Programming FEM Components and Genetic Algorithm
,”
Eng. Struct.
,
241
, p.
112465
.10.1016/j.engstruct.2021.112465
7.
Khodzhaiev
,
M.
, and
Reuter
,
U.
,
2021
, “
Structural Optimization of Transmission Towers Using a Novel Genetic Algorithm Approach With a Variable Length Genome
,”
Eng. Struct.
,
240
, p.
112306
.10.1016/j.engstruct.2021.112306
8.
Simon
,
D.
,
2008
, “
Biogeography-Based Optimization
,”
IEEE Trans. Evol. Comput.
,
12
(
6
), pp.
702
713
.10.1109/TEVC.2008.919004
9.
Ergezer
,
M.
,
Simon
,
D.
, and
Du
,
D.
,
2009
, “
Oppositional Biogeography-Based Optimization
,”
International Conference on Systems, Man and Cybernetics
, San Antonio, TX, Oct. 11–14, pp.
1009
1014
.10.1109/ICSMC.2009.5346043
10.
Du
,
D.
,
Simon
,
D.
, and
Ergezer
,
M.
,
2009
, “
Biogeography-Based Optimization Combined With Evolutionary Strategy and Immigration Refusal
,”
International Conference on Systems, Man and Cybernetics,
San Antonio, TX, Oct. 11–14, pp.
997
1002
.10.1109/ICSMC.2009.5346055
11.
Geem
,
Z. W.
,
Kim
,
J. H.
, and
Loganathan
,
G. V.
,
2001
, “
A New Heuristic Optimization Algorithm: Harmony Search
,”
Simulation
,
76
(
2
), pp.
60
68
.10.1177/003754970107600201
12.
Murren
,
P.
, and
Khandelwal
,
K.
,
2014
, “
Design-Driven Harmony Search (DDHS) in Steel Frame Optimization
,”
Eng. Struct.
,
59
, pp.
798
808
.10.1016/j.engstruct.2013.12.003
13.
Molina-Moreno
,
F.
,
García-Segura
,
T.
,
Martí
,
J. V.
, and
Yepes
,
V.
,
2017
, “
Optimization of Buttressed Earth-Retaining Walls Using Hybrid Harmony Search Algorithms
,”
Eng. Struct.
,
134
, pp.
205
216
.10.1016/j.engstruct.2016.12.042
14.
Storn
,
R.
, and
Price
,
K.
,
1997
, “
Differential Evolution: A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Glob. Optim.
,
11
(
4
), pp.
341
359
.10.1023/A:1008202821328
15.
Talatahari
,
S.
,
Gandomi
,
A. H.
,
Yang
,
X. S.
, and
Deb
,
S.
,
2015
, “
Optimum Design of Frame Structures Using the Eagle Strategy With Differential Evolution
,”
Eng. Struct.
,
91
, pp.
16
25
.10.1016/j.engstruct.2015.02.026
16.
Dorigo
,
M.
, and
Stutzle
,
T.
,
2004
,
Ant Colony Optimization
,
MIT Press
,
Cambridge, MA
.
17.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the Sixth International Symposium on Micro Machine and Human Science
, Nagoya, Japan, Oct. 4–6, pp.
39
43
.10.1109/MHS.1995.494215
18.
Minh
,
H. L.
,
Khatir
,
S.
,
Wahab
,
M. A.
, and
Cuong-Le
,
T.
,
2021
, “
An Enhancing Particle Swarm Optimization Algorithm (EHVPSO) for Damage Identification in 3D Transmission Tower
,”
Eng. Struct.
,
242
, p.
112412
.10.1016/j.engstruct.2021.112412
19.
Jiang
,
W.
,
Xie
,
Y.
,
Li
,
W.
,
Wu
,
J.
, and
Long
,
G.
,
2021
, “
Prediction of the Splitting Tensile Strength of the Bonding Interface by Combining the Support Vector Machine With the Particle Swarm Optimization Algorithm
,”
Eng. Struct.
,
230
, p.
111696
.10.1016/j.engstruct.2020.111696
20.
Tapao
,
A.
, and
Cheerarot
,
R.
,
2017
, “
Optimal Parameters and Performance of Artificial Bee Colony Algorithm for Minimum Cost Design of Reinforced Concrete Frames
,”
Eng. Struct.
,
151
, pp.
802
820
.10.1016/j.engstruct.2017.08.059
21.
Bajer
,
D.
, and
Zorić
,
B.
,
2019
, “
An Effective Refined Artificial Bee Colony Algorithm for Numerical Optimization
,”
Inf. Sci.
,
504
, pp.
221
275
.10.1016/j.ins.2019.07.022
22.
Gorkemli
,
B.
, and
Karaboga
,
D.
,
2019
, “
A Quick Semantic Artificial Bee Colony Programming (qsABCP) for Symbolic Regression
,”
Inf. Sci.
,
502
, pp.
346
362
.10.1016/j.ins.2019.06.052
23.
Camp
,
C. V.
, and
Farshchin
,
M.
,
2014
, “
Design of Space Trusses Using Modified Teaching-Learning Based Optimization
,”
Eng. Struct.
,
62–63
, pp.
87
97
.10.1016/j.engstruct.2014.01.020
24.
Shen
,
W.
,
Guo
,
X.
,
Wu
,
C.
, and
Wu
,
D.
,
2011
, “
Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm
,”
Knowl.-Based Syst.
,
24
(
3
), pp.
378
385
.10.1016/j.knosys.2010.11.001
25.
Yang
,
L.
,
Qi
,
C.
,
Lin
,
X.
,
Li
,
J.
, and
Dong
,
X.
,
2019
, “
Prediction of Dynamic Increase Factor for Steel Fibre Reinforced Concrete Using a Hybrid Artificial Intelligence Model
,”
Eng. Struct.
,
189
, pp.
309
318
.10.1016/j.engstruct.2019.03.105
26.
Gandomi
,
A. H.
,
Yang
,
X. S.
, and
Alavi
,
A. H.
,
2011
, “
Mixed Variable Structural Optimization Using Firefly Algorithm
,”
Comput. Struct.
,
89
(
23–24
), pp.
2325
2336
.10.1016/j.compstruc.2011.08.002
27.
De Souza
,
R. R.
,
Miguel
,
L. F. F.
,
Lopez
,
R. H.
,
Miguel
,
L. F. F.
, and
Torii
,
A. J.
,
2016
, “
A Procedure for the Size, Shape and Topology Optimization of Transmission Line Tower Structures
,”
Eng. Struct.
,
111
, pp.
162
184
.10.1016/j.engstruct.2015.12.005
28.
Awad
,
R.
,
2021
, “
Sizing Optimization of Truss Structures Using the Political Optimizer (PO) Algorithm
,”
Structures
,
33
, pp.
4871
4894
.10.1016/j.istruc.2021.07.027
29.
Tran-Ngoc
,
H.
,
Khatir
,
S.
,
De Roeck
,
G.
,
Bui-Tien
,
T.
, and
Wahab
,
M. A.
,
2019
, “
An Efficient Artificial Neural Network for Damage Detection in Bridges and Beam-Like Structures by Improving Training Parameters Using Cuckoo Search Algorithm
,”
Eng. Struct.
,
199
, p.
109637
.10.1016/j.engstruct.2019.109637
30.
Savković
,
M. M.
,
Bulatović
,
R. R.
,
Gašić
,
M. M.
,
Pavlović
,
G. V.
, and
Stepanović
,
A. Z.
,
2017
, “
Optimization of the Box Section of the Main Girder of the Single-Girder Bridge Crane by Applying Biologically Inspired Algorithms
,”
Eng. Struct.
,
148
, pp.
452
465
.10.1016/j.engstruct.2017.07.004
31.
Yang
,
X. S.
, and
Gandomi
,
A. H.
,
2012
, “
Bat Algorithm: A Novel Approach for Global Engineering Optimization
,”
Eng. Comput.
,
29
(
5
), pp.
464
483
.10.1108/02644401211235834
32.
Bekdaş
,
G.
,
Nigdeli
,
S. M.
, and
Yang
,
X. S.
,
2018
, “
A Novel Bat Algorithm Based Optimum Tuning of Mass Dampers for Improving the Seismic Safety of Structures
,”
Eng. Struct.
,
159
, pp.
89
98
.10.1016/j.engstruct.2017.12.037
33.
Cao
,
H.
,
Sun
,
W.
,
Chen
,
Y.
,
Kong
,
F.
, and
Feng
,
L.
,
2023
, “
Sizing and Shape Optimization of Truss Employing a Hybrid Constraint-Handling Technique and Manta Ray Foraging Optimization
,”
Expert Syst. Appl.
,
213
, p.
118999
.10.1016/j.eswa.2022.118999
34.
Gandomi
,
A. H.
, and
Alavi
,
A. H.
,
2012
, “
Krill Herd: A New Bio-Inspired Optimization Algorithm
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4831
4845
.10.1016/j.cnsns.2012.05.010
35.
Gandomi
,
A. H.
,
Talatahari
,
S.
,
Tadbiri
,
F.
, and
Alavi
,
A. H.
,
2013
, “
Krill Herd Algorithm for Optimum Design of Truss Structures
,”
Int. J. Bio. Inspired Comput.
,
5
(
5
), pp.
281
288
.10.1504/IJBIC.2013.057191
36.
Gandomi
,
A. H.
,
Alavi
,
A. H.
, and
Talatahari
,
S.
,
2013
, “
Structural Optimization Using Krill Herd Algorithm
,”
Swarm Intelligence Bio-Inspired Computation
, Elsevier, Amsterdam, The Netherlands, pp.
335
349
.
37.
Abdel-Basset
,
M.
,
Wang
,
G. G.
,
Sangaiah
,
A. K.
, and
Rushdy
,
E.
,
2019
, “
Krill Herd Algorithm Based on Cuckoo Search for Solving Engineering Optimization Problems
,”
Multimed. Tools Appl.
,
78
(
4
), pp.
3861
3884
.10.1007/s11042-017-4803-x
38.
Wang
,
G. G.
,
Guo
,
L.
,
Gandomi
,
A. H.
,
Hao
,
G. S.
, and
Wang
,
H.
,
2014
, “
Chaotic Krill Herd Algorithm
,”
Inf. Sci.
,
274
, pp.
17
34
.10.1016/j.ins.2014.02.123
39.
Wang
,
G. G.
,
Deb
,
S.
,
Gandomi
,
A. H.
, and
Alavi
,
A. H.
,
2016
, “
Opposition-Based Krill Herd Algorithm With Cauchy Mutation and Position Clamping
,”
Neurocomputing
,
177
, pp.
147
157
.10.1016/j.neucom.2015.11.018
40.
Wang
,
G. G.
,
Gandomi
,
A. H.
,
Alavi
,
A. H.
, and
Deb
,
S.
,
2016
, “
A Multi-Stage Krill Herd Algorithm for Global Numerical Optimization
,”
Int. J. Artif. Intell. Tools
,
25
(
02
), p.
1550030
.10.1142/S021821301550030X
41.
Guo
,
L.
,
Wang
,
G. G.
,
Gandomi
,
A. H.
,
Alavi
,
A. H.
, and
Duan
,
H.
,
2014
, “
A New Improved Krill Herd Algorithm for Global Numerical Optimization
,”
Neurocomputing
,
138
, pp.
392
402
.10.1016/j.neucom.2014.01.023
42.
Laith
,
M. A.
,
Ahamad
,
T. K.
, and
Essam
,
S. H.
,
2019
, “
Modified Krill Herd Algorithm for Global Numerical Optimization Problems
,”
Advances in Nature-Inspired Computing and Applications
, Springer, Cham, Switzerland, pp.
205
221
.10.1007/978-3-319-96451-5_9
43.
Li
,
J.
,
Tang
,
Y.
,
Hua
,
C.
, and
Guan
,
X.
,
2014
, “
An Improved Krill Herd Algorithm: Krill Herd With Linear Decreasing Step
,”
Appl. Math. Comput.
,
234
(
10
), pp.
356
367
.10.1016/j.amc.2014.01.146
44.
Wang
,
G. G.
,
Gandomi
,
A. H.
, and
Alavi
,
A. H.
,
2014
, “
Stud Krill Herd Algorithm
,”
Neurocomputing
,
128
, pp.
363
370
.10.1016/j.neucom.2013.08.031
45.
Wang
,
G.
,
Guo
,
L.
,
Gandomi
,
A. H.
,
Cao
,
L.
,
Alavi
,
A. H.
,
Duan
,
H.
, and
Li
,
J.
,
2013
, “
Lévy-Flight Krill Herd Algorithm
,”
Math. Probl. Eng..
,
2013
, pp.
1
14
.10.1155/2013/682073
46.
Lee
,
K. S.
,
Geem
,
Z. W.
,
Lee
,
S.
, and
Bae
,
K. W.
,
2005
, “
The Harmony Search Heuristic Algorithm for Discrete Structural Optimization
,”
Eng. Optimiz.
,
37
(
7
), pp.
663
684
.10.1080/03052150500211895
47.
Cheng
,
M. Y.
,
Prayogo
,
D.
,
Wu
,
Y. W.
, and
Lukito
,
M. M.
,
2016
, “
A Hybrid Harmony Search Algorithm for Discrete Sizing Optimization of Truss Structure
,”
Autom. Constr.
,
69
, pp.
21
33
.10.1016/j.autcon.2016.05.023
48.
Knuth
,
D. E.
,
1976
, “
Big Omicron and Big Omega and Big Theta
,”
ACM Sigact News
,
8
(
2
), pp.
18
24
.10.1145/1008328.1008329
49.
Construction
,
A.
,
1989
,
Manual of Steel Construction: Allowable Stress Design
,
American Institute of Steel Construction
,
Chicago, IL
.
50.
Hasançebi
,
O.
,
Çarbaş
,
S.
,
Doğan
,
E.
,
Erdal
,
F. E.
, and
Saka
,
M. P.
,
2009
, “
Performance Evaluation of Metaheuristic Search Techniques in the Optimum Design of Real Size Pin Jointed Structures
,”
Comput. Struct.
,
87
(
5–6
), pp.
284
302
.10.1016/j.compstruc.2009.01.002
You do not currently have access to this content.