Abstract

Elevated pipelines systems are commonly supported by flexible steel frames at regular intervals. During operation, these systems can be subjected to sources of harmonic excitations. In order to control the vibration response for such systems, designers may target a threshold minimum fundamental natural frequency for the system. Within this context, the study first shows that, within the ranges of straight pipelines geometries commonly used in the oil and gas industry, the fluid mass and stiffness of the intermediate flexible supports significantly impact the fundamental natural frequency of the system, while fluid velocity within the practical range of the oil and gas industry, temperature differential between the installation and operating temperatures, and pipe self-weight are less important or negligible. The study further extends the analysis to nonstraight piping systems with L-Shape and S-Shape configurations. In conclusion, design formulas are proposed to estimate the required lateral and transverse stiffnesses for the supporting systems to attain a specified fundamental natural frequency for straight and curved pipelines. Natural frequency comparisons with finite element solutions show the validity of the proposed design formulas.

References

1.
Long
,
R. H.
, March
1955
, “
Experimental and Theoretical Study of Transverse Vibration of a Tube Containing Flowing Fluid
,”
J. Appl. Mech.
,
22
(
1
), pp.
65
68
.10.1115/1.4010971
2.
-
Housner
,
G. W.
,
1952
, “
Bending Vibrations of a Pipe Line Containing Flowing Fluid
,”
J. Appl. Mech.
,
19
(
2
), pp.
205
208
.10.1115/1.4010447
3.
Benjamin
,
T. B.
,
1962
, “
Dynamics of a System of Articulated Pipes Conveying Fluid - I
,”
Proc. R. Soc. London Ser. A
,
267
(
1037
), p.
A261457
.10.1098/rspa.1961.0090
4.
Gregory
,
R. W.
, and
Paidoussis
,
M. P.
,
1966
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid. I. Theory
,”
Proc. R. Soc. London. Ser. A
,
293
, pp.
512
527
.10.1098/rspa.1966.0187
5.
Yi-Min
,
H.
,
Yong-Shou
,
L.
,
Bao-Hui
,
L.
,
Yan-Jiang
,
L.
, and
Zhu-Feng
,
Y.
,
2010
, “
Natural Frequency Analysis of Fluid Conveying Pipeline With Different Boundary Conditions
,”
Nucl. Eng. Des.
,
240
(
3
), pp.
461
467
.10.1016/j.nucengdes.2009.11.038
6.
Kheiri
,
M.
,
Païdoussis
,
M. P.
,
Costa Del Pozo
,
G.
, and
Amabili
,
M.
,
2014
, “
Dynamics of a Pipe Conveying Fluid Flexibly Restrained at the Ends
,”
J. Fluids Struct.
,
49
, pp.
360
385
.10.1016/j.jfluidstructs.2013.11.023
7.
Marzani
,
A.
,
Mazzotti
,
M.
,
Viola
,
E.
,
Vittori
,
P.
, and
Elishakoff
,
I.
,
2012
, “
FEM Formulation for Dynamic Instability of Fluid-Conveying Pipe on Nonuniform Elastic Foundation
,”
Mech. Based Des. Struct. Mach.
,
40
(
1
), pp.
83
95
.10.1080/15397734.2011.618443
8.
Yan
,
D.
,
Guo
,
S.
,
Li
,
Y.
,
Song
,
J.
,
Li
,
M.
, and
Chen
,
W.
,
2021
, “
Dynamic Characteristics and Responses of Flow-Conveying Flexible Pipe Under Consideration of Axially-Varying Tension
,”
Ocean Eng.
,
223
, p.
108631
.10.1016/j.oceaneng.2021.108631
9.
Amini
,
Y.
,
Heshmati
,
M.
, and
Daneshmand
,
F.
,
2020
, “
Dynamic Behavior of Conveying-Fluid Pipes With Variable Wall Thickness Through Circumferential and Axial Directions
,”
Mar. Struct.
,
72
, p.
102758
.10.1016/j.marstruc.2020.102758
10.
Sugiyama
,
Y.
,
Tanaka
,
Y.
,
Kishi
,
T.
, and
Kawagoe
,
H.
,
1985
, “
Effect of a Spring Support on the Stability of Pipes Conveying Fluid
,”
J. Sound Vib.
,
100
(
2
), pp.
257
270
.10.1016/0022-460X(85)90419-5
11.
Alnomani
,
S. N.
,
2018
, “
Investigation of Vibration Characteristics for Simply Supported Pipe Conveying Fluid Bymechanical Spring
,”
ARPN J. Eng. Appl. Sci.
,
13
, pp.
3857
3866
.https://www.researchgate.net/publication/326127578_Investigation_of_vibration_characteristics_for_simply_supported_pipe_conveying_fluid_bymechanical_spring
12.
El-Sayed
,
T. A.
, and
El-Mongy
,
H. H.
,
2019
, “
Free Vibration and Stability Analysis of a Multi-Span Pipe Conveying Fluid Using Exact and Variational Iteration Methods Combined With Transfer Matrix Method
,”
Appl. Math. Modell.
,
71
, pp.
173
193
.10.1016/j.apm.2019.02.006
13.
Wu
,
J.-S.
, and
Shih
,
P.-Y.
,
2001
, “
The Dynamic Analysis of a Multispan Fluid-Conveying Pipe Subjected to External Load
,”
J. Sound Vib.
,
239
(
2
), pp.
201
215
.10.1006/jsvi.2000.3119
14.
Païdoussis
,
M. P.
,
1998
, “
Fluid–Structure Interactions: Slender Structures and Axial Flow
,”
Academic Press
, Cambridge, MA.
15.
Misra
,
A. K.
,
Paidoussis
,
M. P.
, and
Van
,
K. S.
,
1988
, “
On the Dynamics of Curved Pipes Transporting Fluid, Part I: Inextensible Theory
,”
J. Fluids Struct.
,
2
(
3
), pp.
221
244
.10.1016/S0889-9746(88)80009-4
16.
-
Misra
,
A. K.
,
Paidoussis
,
M. P.
, and
Van
,
K. S.
,
1988
, “
On the Dynamics of Curved Pipes Transporting Fluid, Part II: Extensible Theory
,”
J. Fluids Struct.
,
2
(
3
), pp.
245
261
.10.1016/S0889-9746(88)80010-0
17.
Lin
,
W.
, and
Qiao
,
N.
,
2008
, “
In-Plane Vibration Analyses of Curved Pipes Conveying Fluid Using the Generalized Differential Quadrature Rule
,”
Comput. Struct.
,
86
(
1–2
), pp.
133
139
.10.1016/j.compstruc.2007.05.011
18.
Yuan
,
J.-R.
, and
Ding
,
H.
,
2023
, “
An Out-of-Plane Vibration Model for in-Plane Curved Pipes Conveying Fluid
,”
Ocean Eng.
,
271
, p.
113747
.10.1016/j.oceaneng.2023.113747
19.
Wu
,
J-h.
,
Tijsseling
,
A. S.
,
Sun
,
Y-D.
, and
Yin
,
Z.-Y.
,
2020
, “
In-Plane Wave Propagation Analysis of Fluid-Filled L-Shape Pipe With Multiple Supports by Using Impedance Synthesis Method
,”
Int. J. Pressure Vessels Piping
,
188
, p.
104234
.10.1016/j.ijpvp.2020.104234
20.
Attia
,
S.
,
Mohareb
,
M.
,
Martens
,
M.
, and
Adeeb
,
S.
,
2024
, “
Finite Element Analysis for Free Vibration of Pipes Conveying Fluids–Physical Significance of Complex Mode Shapes
,”
Thin-Walled Struct.
,
200
, p.
111894
.10.1016/j.tws.2024.111894
21.
Bai
,
Y.
, and
Bai
,
Q.
,
2005
, “
Chapter 18 - Hydraulics
,”
Subsea Pipelines and Risers
,
Bai
,
Y.
, and
Bai
,
Q.
, eds.,
Elsevier Science Ltd.
, Oxford, UK, pp.
277
316
.
22.
Botros
,
K. K.
,
Jensen
,
L.
, and
Foo
,
S.
,
2018
, “
Determination of Erosion-Based Maximum Velocity Limits in Natural Gas Facilities
,”
J. Nat. Gas Sci. Eng.
,
55
, pp.
395
405
.
23.
DNVGL,
2017
, “DNVGL-RP-D101
Structural Analysis of Piping Systems
,” accessed Feb. 24, 2025, https://pdf4pro.com/view/dnvgl-rp-d101-structural-analysis-of-piping-systems-64f8fb.html
24.
Simulia ABAQUS
,
2017
, “
User’s Manual Version 6.13 Documentation
,” Dassault Systèmes Simulia Corpthe, Providence, RI.
25.
Yuan
,
J.-R.
, and
Ding
,
H.
,
2022
, “
Dynamic Model of Curved Pipe Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
,”
Int. J. Mech. Sci.
,
232
, p.
107625
.10.1016/j.ijmecsci.2022.107625
You do not currently have access to this content.