Abstract

In this review paper, dissimilar welding between Inconel and austenitic stainless steel along with its application has been outlined for high-temperature applications. The mechanical and microstructural behavior of this dissimilar joint has been summarized thoroughly in this article. Dissimilar welding of Inconel alloys and stainless steel (SS) has massive demand in high temperature and high corrosive applications industries. Austenitic stainless steel contains 16–26% of Cr and 6–12% of Ni elements showing FCC structures have good weldability and high corrosion resistance. Austenitic stainless steel such as 304, 316 L, 304H, etc., containing austenite microstructure used in high-temperature applications like power plants, heat exchangers, heating elements, aircraft, and others. In addition, Ni-based Inconel alloys show high-temperature strength and corrosion resistance and are frequently used in high-temperature applications. Ni-based Inconel 718 alloy possesses excellent strength, corrosion resistance and creep resistance at high temperatures are frequently used in combustion chambers, power plants, and turbine blades applications. Inconel alloyed by elements Ti, Al and Nb attain strength by forming phases such as ɣ/-Ni3(-Ti, Al), ɣ//-Ni3Nb, and carbides such as MC and M23C6, nitrides, laves phase. The GTA dissimilar welding between expensive Inconel and cheaper stainless steel is successfully used in nuclear power plants. The dissimilarity in melting point, chemical composition, thermal, mechanical, and other properties between these materials make welding challengeable. This review paper focused on problems related to dissimilar welding like forming unmixed zone, elemental segregation, formation of laves phase, sensitization, microfissuring, and solidification cracking.

References

1.
Shah
,
L. H.
,
Othman
,
N. H.
, and
Gerlich
,
A.
,
2018
, “
Review of Research Progress on Aluminium–Magnesium Dissimilar Friction Stir Welding
,”
Sci. Technol. Weld. Join.
,
23
(
3
), pp.
256
270
.10.1080/13621718.2017.1370193
2.
Roberts
,
D. I.
,
Ryder
,
R. H.
, and
Viswanathan
,
R.
,
1985
, “
Performance of Dissimilar Welds in Service
,”
ASME J. Pressure Vessel Technol.
,
107
(
3
), pp.
247
254
.10.1115/1.3264443
3.
Kah
,
P.
,
Shrestha
,
M.
, and
Martikainen
,
J.
,
2013
, “
Trends in Joining Dissimilar Metals by Welding
,”
Appl. Mech. Mater.
,
440
, pp.
269
276
.10.4028/www.scientific.net/AMM.440.269
4.
Dube
,
S. K.
,
2018
, “
Technical Analysis for Preferring More Efficient and Green Technology for Thermal Power Generation: “Advanced-Ultra Supercritical 760 °C
,”
Int. J. Sci. Res. Publ.
,
8
(
11
), pp. 622–635.10.29322/IJSRP.8.11.2018.p8367
5.
Ennis
,
P. J.
, and
Czyrska-Filemonowicz
,
A.
,
2003
, “
Recent Advances in Creep-Resistant Steels for Power Plant Applications
,”
Sadhana Acad. Proc. Eng. Sci.
,
28
(
3–4
), pp.
709
730
.10.1007/BF02706455
6.
Seo
,
W. G.
,
Suh
,
J. Y.
,
Shim
,
J. H.
,
Lee
,
H.
,
Yoo
,
K.
, and
Choi
,
S. H.
,
2020
, “
Effect of Post-Weld Heat Treatment on the Microstructure and Hardness of P92 Steel in IN740H/P92 Dissimilar Weld Joints
,”
Mater. Charact.
,
160
, p.
110083
.10.1016/j.matchar.2019.110083
7.
bin Wen
,
J.
,
Zhou
,
C. Y.
,
Li
,
X.
,
Pan
,
X. M.
,
Chang
,
L.
,
Zhang
,
G. D.
,
Xue
,
F.
, and
Zhao
,
Y. F.
,
2019
, “
Effect of Temperature Range on Thermal-Mechanical Fatigue Properties of P92 Steel and Fatigue Life Prediction With a New Cyclic Softening Model
,”
Int. J. Fatigue
,
129
, p.
105226
.10.1016/j.ijfatigue.2019.105226
8.
Kumar
,
A.
, and
Pandey
,
C.
,
2022
, “
Development and Evaluation of Dissimilar Gas Tungsten Arc-Welded Joint of P92 Steel/Inconel 617 Alloy for Advanced Ultra-Supercritical Boiler Applications
,”
Metall. Mater. Trans. A
, 53, pp.
3245
3273
.10.1007/s11661-022-06723-0
9.
Bhanu
,
V.
,
Pandey
,
C.
, and
Gupta
,
A.
,
2022
, “
Dissimilar Joining of the Martensitic Grade P91 and Incoloy 800HT Alloy for AUSC Boiler Application: Microstructure, Mechanical Properties and Residual Stresses
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
560
580
.10.1016/j.cirpj.2022.06.009
10.
Aghayar
,
Y.
,
Naghashzadeh
,
A. R.
, and
Atapour
,
M.
,
2021
, “
An Assessment of Microstructure and Mechanical Properties of Inconel 601/304 Stainless Steel Dissimilar Weld
,”
Vaccum
,
184
, p.
109970
.10.1016/j.vacuum.2020.109970
11.
Dev
,
S.
,
Ramkumar
,
K. D.
,
Arivazhagan
,
N.
, and
Rajendran
,
R.
,
2018
, “
Investigations on the Microstructure and Mechanical Properties of Dissimilar Welds of Inconel 718 and Sulphur Rich Martensitic Stainless Steel, AISI 416
,”
J. Manuf. Process.
,
32
, pp.
685
698
.10.1016/j.jmapro.2018.03.035
12.
Takakuwa
,
O.
, and
Soyama
,
H.
,
2015
, “
Effect of Residual Stress on the Corrosion Behavior of Austenitic Stainless Steel
,”
Adv. Chem. Eng. Sci.
,
05
(
01
), pp.
62
71
.10.4236/aces.2015.51007
13.
Bhattacharyya
,
M.
,
Kundu
,
A.
,
Raja
,
K. S.
,
Darsell
,
J.
,
Jana
,
S.
, and
Charit
,
I.
,
2021
, “
Processing-Microstructure-Property Correlations for Temperature-Controlled Friction Stir Welding of 304 L SS Plates
,”
Mater. Sci. Eng. A
,
804
, p.
140635
.10.1016/j.msea.2020.140635
14.
Dak
,
G.
, and
Pandey
,
C.
,
2022
, “
Microstructure Anomaly During Welding and Its Influence on the Mechanical Properties of Dissimilar Weldments of P92 Martensitic Steel and AISI 304 L Austenitic Stainless Steel
,”
J. Manuf. Process.
,
80
, pp.
829
851
.10.1016/j.jmapro.2022.06.048
15.
Dak
,
G.
,
Sirohi
,
S.
, and
Pandey
,
C.
,
2022
, “
Study on Microstructure and Mechanical Behavior Relationship for Laser-Welded Dissimilar Joint of P92 Martensitic and 304 L Austenitic Steel
,”
Int. J. Pressure Vessels Pip.
,
196
, p.
104629
.10.1016/j.ijpvp.2022.104629
16.
Chandrasekar
,
G.
,
Kailasanathan
,
C.
, and
Vasundara
,
M.
,
2018
, “
Investigation on un-Peened and Laser Shock Peened Dissimilar Weldments of Inconel 600 and AISI 316 L Fabricated Using activated-TIG Welding Technique
,”
J. Manuf. Process.
,
35
, pp.
466
478
.10.1016/j.jmapro.2018.09.004
17.
Ramkumar
,
K. D.
,
Arivazhagan
,
N.
, and
Narayanan
,
S.
,
2012
, “
Effect of Filler Materials on the Performance of Gas Tungsten Arc Welded AISI 304 and Monel 400
,”
J. Mater.
,
40
, pp.
70
79
.10.1016/j.matdes.2012.03.024
18.
Sireesha
,
M.
,
Shankar
,
V.
,
Albert
,
S. K.
, and
Sundaresan
,
S.
,
2000
, “
Microstructural Features of Dissimilar Welds Between 316 LN Austenitic Stainless Steel and Alloy 800
,”
Mater. Sci. Eng. A
,
292
(
1
), pp.
74
82
.10.1016/S0921-5093(00)00969-2
19.
Devendranath Ramkumar
,
K.
,
Joshi
,
V.
,
Pandit
,
S.
,
Agrawal
,
M.
,
Kumar
,
O. S.
,
Periwal
,
S.
,
Manikandan
,
M.
, and
Arivazhagan
,
N.
,
2014
, “
Investigations on the Microstructure and Mechanical Properties of Multi-Pass Pulsed Current Gas Tungsten Arc Weldments of Monel 400 and Hastelloy C276
,”
Mater. Des.
,
64
, pp.
775
782
.10.1016/j.matdes.2014.08.055
20.
Kumar
,
R.
,
Dey
,
H. C.
,
Pradhan
,
A. K.
,
Albert
,
S. K.
,
Thakre
,
J. G.
,
Mahapatra
,
M. M.
, and
Pandey
,
C.
,
2022
, “
Numerical and Experimental Investigation on Distribution of Residual Stress and the Influence of Heat Treatment in Multi-Pass Dissimilar Welded Rotor Joint of Alloy 617/10Cr Steel
,”
Int. J. Pressure Vessels Pip.
,
199
, p.
104715
.10.1016/j.ijpvp.2022.104715
21.
Radhakrishna
,
C. H.
, and
Prasad Rao
,
K.
,
1997
, “
The Formation and Control of Laves Phase in Superalloy 718 Welds
,”
J. Mater. Sci.
,
32
(
8
), pp.
1977
1984
.10.1023/A:1018541915113
22.
Manikandan
,
S. G. K.
,
Sivakumar
,
D.
,
Kamaraj
,
M.
, and
Rao
,
K. P.
,
2012
, “
Laves Phase Control in Inconel 718 Weldments
,”
Mater. Sci. Forum
, 710, pp.
614
619
.https://www.scientific.net/MSF.710.614
23.
Kumar
,
S.
,
Sirohi
,
S.
,
Vidyarthy
,
R. S.
,
Gupta
,
A.
, and
Pandey
,
C.
,
2021
, “
Role of the Ni-Based Filler Composition on Microstructure and Mechanical Behavior of the Dissimilar Welded Joint of P22 and P91 Steel
,”
Int. J. Pressure Vessels Piping
,
193
, p.
104473
.10.1016/j.ijpvp.2021.104473
24.
Bhanu
,
V.
,
Gupta
,
A.
, and
Pandey
,
C.
,
2022
, “
Role of A-TIG Process in Joining of Martensitic and Austenitic Steels for Ultra-Supercritical Power Plants -A State of the Art Review
,”
Nucl. Eng. Technol.
,
54
(
8
), pp.
2755
2770
.10.1016/j.net.2022.03.003
25.
Dak
,
G.
, and
Pandey
,
C.
,
2020
, “
A Critical Review on Dissimilar Welds Joint Between Martensitic and Austenitic Steel for Power Plant Application
,”
J. Manuf. Process.
,
58
, pp.
377
406
.10.1016/j.jmapro.2020.08.019
26.
Lippold
,
J. C.
, and
Kotecki
,
D. J.
,
2005
,
Welding Metallurgy and Weldability of Stainless Steels
,
Wiley
, Hoboken, NJ.
27.
Chandra
,
K.
,
Kain
,
V.
, and
Ganesh
,
P.
,
2008
, “
Controlling End-Grain Corrosion of Austenitic Stainless Steels
,”
J. Mater. Eng. Perform.
,
17
(
1
), pp.
115
122
.10.1007/s11665-007-9117-0
28.
Mirshekari
,
G. R.
,
Tavakoli
,
E.
,
Atapour
,
M.
, and
Sadeghian
,
B.
,
2014
, “
Microstructure and Corrosion Behavior of Multipass Gas Tungsten Arc Welded 304 L Stainless Steel
,”
Mater. Des.
,
55
, pp.
905
911
.10.1016/j.matdes.2013.10.064
29.
El-Hadad
,
S.
,
Khalifa
,
W.
, and
Nofal
,
A.
,
2015
, “
Surface Modification of Investment Cast-316 L Implants: Microstructure Effects
,”
Mater. Sci. Eng. C
,
48
, pp.
320
327
.10.1016/j.msec.2014.12.038
30.
Siefert
,
J. A.
,
David
,
S. A.
,
Siefert
,
J. A.
, and
David
,
S. A.
,
2014
, “
Weldability and Weld Performance of Candidate Austenitic Alloys for Advanced Ultrasupercritical Fossil Power Plants
,”
Sci. Technol. Weld. Joining
, 19(4), pp.
271
294
.10.1179/1362171814Y.0000000197
31.
Thakare
,
J. G.
,
Pandey
,
C.
,
Mahapatra
,
M. M.
, and
Mulik
,
R. S.
,
2019
, “
An Assessment for Mechanical and Microstructure Behavior of Dissimilar Material Welded Joint Between Nuclear Grade Martensitic P91 and Austenitic SS304 L Steel
,”
J. Manuf. Process.
,
48
, pp.
249
259
.10.1016/j.jmapro.2019.10.002
32.
Buddu
,
R. K.
,
Chauhan
,
N.
,
Raole
,
P. M.
, and
Natu
,
H.
,
2015
, “
Studies on Mechanical Properties, Microstructure and Fracture Morphology Details of Laser Beam Welded Thick SS304 L Plates for Fusion Reactor Applications
,”
Fusion Eng. Des.
,
95
, pp.
34
43
.10.1016/j.fusengdes.2015.04.001
33.
Kumar Singh
,
D.
,
Sahoo
,
G.
,
Basu
,
R.
,
Sharma
,
V.
, and
Mohtadi-Bonab
,
M. A.
,
2018
, “
Investigation on the Microstructure—Mechanical Property Correlation in Dissimilar Steel Welds of Stainless Steel SS 304 and Medium Carbon Steel EN 8
,”
J. Manuf. Process.
,
36
, pp.
281
292
.10.1016/j.jmapro.2018.10.018
34.
Zhang
,
Z.
,
Hu
,
Z. F.
,
Zhang
,
L. F.
,
Chen
,
K.
, and
Singh
,
P. M.
,
2018
, “
Effect of Temperature and Dissolved Oxygen on Stress Corrosion Cracking Behavior of P92 Ferritic-Martensitic Steel in Supercritical Water Environment
,”
J. Nucl. Mater.
,
498
, pp.
89
102
.10.1016/j.jnucmat.2017.10.024
35.
Boriwal
,
L.
,
Sarviya
,
R. M.
, and
Mahapatra
,
M. M.
,
2017
, “
Optimization of Weld Bonding Process Parameters of Austenitic Stainless Steel 304 L and Low Carbon Steel Sheet Dissimilar Joints
,”
J. Adhes. Sci. Technol.
,
31
(
14
), pp.
1591
1616
.10.1080/01694243.2016.1266844
36.
Shakil
,
M.
,
Ahmad
,
M.
,
Tariq
,
N. H.
,
Hasan
,
B. A.
,
Akhter
,
J. I.
,
Ahmed
,
E.
,
Mehmood
,
M.
,
Choudhry
,
M. A.
, and
Iqbal
,
M.
,
2014
, “
Microstructure and Hardness Studies of Electron Beam Welded Inconel 625 and Stainless Steel 304 L
,”
Vacuum
,
110
, pp.
121
126
.10.1016/j.vacuum.2014.08.016
37.
Pandey
,
C.
,
2020
, “
Mechanical and Metallurgical Characterization of Dissimilar P92/SS304 L Welded Joints Under Varying Heat Treatment Regimes
,”
Metall. Mater. Trans. A
,
51
(
5
), pp.
2126
2142
.10.1007/s11661-020-05660-0
38.
Kumar
,
B. R.
,
Das
,
S. K.
,
Sharma
,
S.
, and
Sahu
,
J. K.
,
2010
, “
Effect of Thermal Cycles on Heavily Cold Deformed AISI 304 L Austenitic Stainless Steel
,”
Mater. Sci. Eng. A
,
527
(
4–5
), pp.
875
882
.10.1016/j.msea.2009.08.075
39.
Chen
,
A. Y.
,
Hu
,
W. F.
,
Wang
,
D.
,
Zhu
,
Y. K.
,
Wang
,
P.
,
Yang
,
J. H.
,
Wang
,
X. Y.
,
Gu
,
J. F.
, and
Lu
,
J.
,
2017
, “
Improving the Intergranular Corrosion Resistance of Austenitic Stainless Steel by High Density Twinned Structure
,”
Scr. Mater.
,
130
, pp.
264
268
.10.1016/j.scriptamat.2016.11.032
40.
Mortezaie
,
A.
, and
Shamanian
,
M.
,
2014
, “
An Assessment of Microstructure, Mechanical Properties and Corrosion Resistance of Dissimilar Welds Between Inconel 718 and 310S Austenitic Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
116
, pp.
37
46
.10.1016/j.ijpvp.2014.01.002
41.
Ghaderi
,
S.
,
Karimzadeh
,
F.
, and
Ashrafi
,
A.
,
2020
, “
Evaluation of Microstructure and Mechanical Properties of Transient Liquid Phase Bonding of Inconel 718 and Nano/Ultrafine-Grained 304 L Stainless Steel
,”
J. Manuf. Process.
,
49
, pp.
162
174
.10.1016/j.jmapro.2019.11.005
42.
Shah Hosseini
,
H.
,
Shamanian
,
M.
, and
Kermanpur
,
A.
,
2011
, “
Characterization of Microstructures and Mechanical Properties of Inconel 617/310 Stainless Steel Dissimilar Welds
,”
Mater. Charact.
,
62
(
4
), pp.
425
431
.10.1016/j.matchar.2011.02.003
43.
Rogalski
,
G.
,
Jurkowski
,
M.
,
Łabanowski
,
J.
, and
Fydrych
,
D.
,
2018
, “
Effect of the Post-Weld Surface Condition on the Corrosion Resistance of Austenitic Stainless Steel AISI 304
,”
Biul. Inst. Spaw.
,
2018
(
1
), pp.
17
23
.10.17729/ebis.2018.1/2
44.
John
,
S. D. K.
,
DuPont
,
N.
, and
Lippold
,
J. C.
,
2009
, “
Welding Metallurgy and Weldability of Nickel-Base Alloys
,” Wiley, Hoboken, NJ.https://www.wiley.com/en-us/Welding+Metallurgy+and+Weldability+of+Nickel+Base+Alloys-p-9780470087145
45.
Ajay
,
V.
,
Babu
,
N. K.
,
Ashfaq
,
M.
,
Kumar
,
T. M.
, and
Krishna
,
K. V.
,
2021
, “
A Review on Rotary and Linear Friction Welding of Inconel Alloys
,”
Trans. Indian Inst. Met.
, 74, pp.
2583
2598
.10.1007/s12666-021-02345-z
46.
J. R.
Davis
&,
Associates
, eds.,
2000
,
ASM Specialty Handbook: Nickel
,
ASM International Cobalt, and Their Alloys (#06178G), ASM International
, Materials Park, OH.
47.
Ahonen
,
M.
,
2015
,
Effect of Microstructure on Low Temperature Hydrogen- Induced Cracking Behaviour of Nickel-Based Alloy Weld Metals
,
School of Engineering Aalto University Espoo
,
Finland
.
48.
Ram
,
G. D. J.
,
Reddy
,
A. V.
,
Rao
,
K. P.
, and
Reddy
,
G. M.
,
2004
, “
Control of Laves Phase in Inconel 718 GTA Welds With Current Pulsing
,”
Sci. Technol. Weld. Join.
,
9
, pp.
390
398
.10.1179/136217104225021788
49.
Azadian
,
S.
,
Wei
,
L. Y.
, and
Warren
,
R.
,
2004
, “
Delta Phase Precipitation in Inconel 718
,”
Mater. Charact.
,
53
(
1
), pp.
7
16
.10.1016/j.matchar.2004.07.004
50.
Sonar
,
T.
,
Balasubramanian
,
V.
,
Malarvizhi
,
S.
,
Venkateswaran
,
T.
, and
Sivakumar
,
D.
,
2021
, “
An Overview on Welding of Inconel 718 Alloy - Effect of Welding Processes on Microstructural Evolution and Mechanical Properties of Joints
,”
Mater. Charact.
,
174
, p.
110997
.10.1016/j.matchar.2021.110997
51.
Janaki Ram
,
G. D.
,
Venugopal Reddy
,
A.
,
Prasad Rao
,
K.
,
Reddy
,
G. M.
, and
Sarin Sundar
,
J. K.
,
2005
, “
Microstructure and Tensile Properties of Inconel 718 Pulsed Nd-YAG Laser Welds
,”
J. Mater. Process. Technol.
,
167
(
1
), pp.
73
82
.10.1016/j.jmatprotec.2004.09.081
52.
Samal
,
M. K.
,
Seidenfuss
,
M.
,
Roos
,
E.
, and
Balani
,
K.
,
2011
, “
Investigation of Failure Behavior of Ferritic – Austenitic Type of Dissimilar Steel Welded Joints
,”
Eng. Fail. Anal.
,
18
(
3
), pp.
999
1008
.10.1016/j.engfailanal.2010.12.011
53.
Sun
,
Z.
,
Han
,
H.
, and
Han
,
H.
,
1994
, “
Weldability and Properties of Martensitic/Austenitic Stainless Steel Joints Weldability and Properties of Illartensitic/Austenitic Stainless Steel Joints
,”
Mater. Sci. Technol.
, 10(9), pp.
823
829
.10.1179/mst.1994.10.9.823
54.
Ramkumar
,
K. D.
,
Abraham
,
W. S.
,
Viyash
,
V.
,
Arivazhagan
,
N.
, and
Rabel
,
A. M.
,
2017
, “
Investigations on the Microstructure, Tensile Strength and High Temperature Corrosion Behaviour of Inconel 625 and Inconel 718 Dissimilar Joints
,”
J. Manuf. Process.
,
25
, pp.
306
322
.10.1016/j.jmapro.2016.12.018
55.
Mithilesh
,
P.
,
Varun
,
D.
,
Reddy
,
A.
,
Reddy
,
G.
,
Ramkumar
,
K. D.
, and
Narayanan
,
S.
,
2014
, “
Investigations on Dissimilar Weldments of Inconel 625 and AISI 304
,”
Procedia Eng.
,
75
, pp.
66
70
.10.1016/j.proeng.2013.11.013
56.
Naffakh
,
H.
,
Shamanian
,
M.
, and
Ashrafizadeh
,
F.
,
2009
, “
Dissimilar Welding of AISI 310 Austenitic Stainless Steel to Nickel-Based Alloy Inconel 657
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3628
3639
.10.1016/j.jmatprotec.2008.08.019
57.
Ramkumar
,
K. D.
,
Patel
,
S. D.
,
Praveen
,
S. S.
,
Choudhury
,
D. J.
,
Prabaharan
,
P.
,
Arivazhagan
,
N.
, and
Xavior
,
M. A.
,
2014
, “
Influence of Filler Metals and Welding Techniques on the Structure - Property Relationships of Inconel 718 and AISI 316 L Dissimilar Weldments
,”
Mater. Des.
,
62
, pp.
175
188
.10.1016/j.matdes.2014.05.019
58.
Ramkumar
,
K. D.
,
Mithilesh
,
P.
,
Varun
,
D.
,
Reddy
,
A. R. G.
,
Arivazhagan
,
N.
,
Narayanan
,
S.
, and
Kumar
,
K. G.
,
2014
, “
Characterization of Microstructure and Mechanical Properties of Inconel 625 and AISI 304 Dissimilar Weldments
,”
ISIJ Int.
, 54(4), pp.
900
908
.10.2355/isijinternational.54.900
59.
Karunakaran
,
N.
, and
Balasubramanian
,
V.
,
2011
, “
Effect of Pulsed Current on Temperature Distribution, Weld Bead Profiles and Characteristics of Gas Tungsten Arc Welded Aluminum Alloy Joints
,”
Trans. Nonferrous Met. Soc. China
,
21
(
2
), pp.
278
286
.10.1016/S1003-6326(11)60710-3
60.
Jeng
,
S. L.
,
Lee
,
H. T.
,
Weirich
,
T. E.
, and
Rebach
,
W. P.
,
2007
, “
Microstructual Study of the Dissimilar Joints of Alloy 690 and SUS 304 L Stainless Steel
,”
Mater. Trans.
,
48
(
3
), pp.
481
489
.10.2320/matertrans.48.481
61.
Lin
,
H. L.
, and
Wu
,
T. M.
,
2012
, “
Effects of Activating Flux on Weld Bead Geometry of Inconel 718 Alloy TIG Welds, Mater
,”
Manuf. Process.
,
27
(
12
), pp.
1457
1461
.10.1080/10426914.2012.677914
62.
Tseng
,
K. H.
, and
Hsu
,
C. Y.
,
2011
, “
Performance of Activated TIG Process in Austenitic Stainless Steel Welds
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
503
512
.10.1016/j.jmatprotec.2010.11.003
63.
Nayee
,
S. G.
, and
Badheka
,
V. J.
,
2014
, “
Effect of Oxide-Based Fluxes on Mechanical and Metallurgical Properties of Dissimilar Activating Flux Assisted-Tungsten Inert Gas Welds
,”
J. Manuf. Process.
,
16
(
1
), pp.
137
143
.10.1016/j.jmapro.2013.11.001
64.
Devendranath Ramkumar
,
K.
,
Dev
,
S.
,
Saxena
,
V.
,
Choudhary
,
A.
,
Arivazhagan
,
N.
, and
Narayanan
,
S.
,
2015
, “
Effect of Flux Addition on the Microstructure and Tensile Strength of Dissimilar Weldments Involving Inconel 718 and AISI 416
,”
Mater. Des.
,
87
, pp.
663
674
.10.1016/j.matdes.2015.08.075
65.
Hejripour
,
F.
, and
Aidun
,
D. K.
,
2017
, “
Consumable Selection for Arc Welding Between Stainless Steel 410 and Inconel 718
,”
J. Mater. Process. Technol.
,
245
, pp.
287
299
.10.1016/j.jmatprotec.2017.02.013
66.
Kourdani
,
A.
, and
Derakhshandeh-Haghighi
,
R.
,
2018
, “
Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316 L Stainless Steel by Applying Different Welding Methods and Consumables
,”
Metall. Mater. Trans. A
,
49
(
4
), pp.
1231
1243
.10.1007/s11661-018-4469-7
67.
Adomako
,
N. K.
,
Park
,
H. J.
,
Cha
,
S. C.
,
Lee
,
M.
, and
Kim
,
J. H.
,
2021
, “
Microstructure Evolution and Mechanical Properties of the Dissimilar Joint Between IN718 and STS304
,”
Mater. Sci. Eng. A
,
799
, p.
140262
.10.1016/j.msea.2020.140262
68.
Ranjbar
,
K.
,
Dehmolaei
,
R.
,
Amra
,
M.
, and
Keivanrad
,
I.
,
2018
, “
Microstructure and Properties of a Dissimilar Weld Between Alloy 617 and A387 Steel Using Different Filler Metals
,”
Weld. World
,
62
(
6
), pp.
1121
1136
.10.1007/s40194-018-0610-x
69.
Arivazhagan
,
N.
,
Singh
,
S.
,
Prakash
,
S.
, and
Reddy
,
G. M.
,
2011
, “
Investigation on AISI 304 Austenitic Stainless Steel to AISI 4140 Low Alloy Steel Dissimilar Joints by Gas Tungsten Arc, Electron Beam and Friction Welding
,”
Mater. Des.
,
32
(
5
), pp.
3036
3050
.10.1016/j.matdes.2011.01.037
70.
Shaikh
,
B. H.
,
Anita
,
T.
,
Poonguzhali
,
A.
, and
Dayal
,
R. K.
,
2011
, “
Stress Corrosion Cracking (SCC) of Austenitic Stainless and Ferritic Steel Weldments
,”
Stress Corr. Crack.
, pp.
427
484
.10.1533/9780857093769.3.427
71.
Ramakrishnan
,
P.
,
1972
,
Welding Metallurgy
,
Wiley
, Hoboken, NJ.
72.
Soysal
,
T.
,
Kou
,
S.
,
Tat
,
D.
, and
Pasang
,
T.
,
2016
, “
Macrosegregation in Dissimilar-Metal Fusion Welding
,”
Acta Mater.
,
110
, pp.
149
160
.10.1016/j.actamat.2016.03.004
73.
Kumar
,
S.
,
Pandey
,
C.
, and
Goyal
,
A.
,
2020
, “
Role of Dissimilar IN617 Nickel Alloy Consumable on Microstructural and Mechanical Behavior of P91 Welds Joint
,”
Arch. Civ. Mech. Eng.
,
20
, p.
99
.10.1007/s43452-020-00104-3
74.
Dokme
,
F.
,
Kulekci
,
M. K.
, and
Esme
,
U.
,
2018
, “
Microstructural and Mechanical Characterization of Dissimilar Metal Welding of Inconel 625 and AISI 316l
,”
Metals (Basel)
,
8
(
10
), p.
797
.10.3390/met8100797
75.
Prabu
,
S. S.
,
Ramkumar
,
K. D.
, and
Arivazhagan
,
N.
,
2017
, “
Microstructural Evolution and Precipitation Behavior in Heat Affected Zone of Inconel 625 and AISI 904 L Dissimilar Welds
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
263
, p.
062073
.10.1088/1757-899X/263/6/062073
76.
Agilan
,
M.
,
Venkateswaran
,
T.
,
Sivakumar
,
D.
, and
Pant
,
B.
,
2014
, “
Effect of Heat Input on Microstructure and Mechanical Properties of Inconel-718 EB Welds
,”
Procedia Mater. Sci.
,
5
, pp.
656
662
.10.1016/j.mspro.2014.07.312
77.
White
,
W. E.
,
1992
, “
Observations of the Influence of Microstructure on Corrosion of Welded Conventional and Stainless Steels
,”
Mater. Charact.
,
28
(
3
), pp.
349
358
.10.1016/1044-5803(92)90021-9
78.
Doerr
,
C.
,
Kim
,
J. Y.
,
Singh
,
P.
,
Wall
,
J. J.
, and
Jacobs
,
L. J.
,
2017
, “
Evaluation of Sensitization in Stainless Steel 304 and 304 L Using Nonlinear Rayleigh Waves
,”
NDT E Int.
,
88
, pp.
17
23
.10.1016/j.ndteint.2017.02.007
79.
Dadfar
,
M.
,
Fathi
,
M. H.
,
Karimzadeh
,
F.
,
Dadfar
,
M. R.
, and
Saatchi
,
A.
,
2007
, “
Effect of TIG Welding on Corrosion Behavior of 316 L Stainless Steel
,”
Mater. Lett.
,
61
(
11–12
), pp.
2343
2346
.10.1016/j.matlet.2006.09.008
80.
Agilan
,
M.
,
Krishna
,
S. C.
,
Manwatkar
,
S. K.
,
Vinayan
,
E. G.
,
Sivakumar
,
D.
, and
Pant
,
B.
,
2012
, “
Effect of Welding Processes (GTAW & EBW) and Solutionizing Temperature on Microfissuring Tendency in Inconel 718 Welds
,”
Mater. Sci. Forum
,
710
, pp.
603
607
.10.4028/www.scientific.net/MSF.710.603
81.
Cao
,
X.
,
Rivaux
,
B.
,
Jahazi
,
M.
,
Cuddy
,
J.
, and
Birur
,
A.
,
2009
, “
Effect of Pre- and Post-Weld Heat Treatment on Metallurgical and Tensile Properties of Inconel 718 Alloy Butt Joints Welded Using 4 kW Nd:YAG Laser
,”
J. Mater. Sci.
,
44
(
17
), pp.
4557
4571
.10.1007/s10853-009-3691-5
82.
Lingenfelter
,
A.
,
1989
, “
Welding of Inconel Alloy 718: A Historical Overview
,”
Superalloy 718 Metallic Applications
,
E. A.
Loria
, ed.,
The Minerals, Metals & Materials Society
,
Pittsburgh, PA
, pp.
673
683
.
83.
Race
,
J. M.
,
1992
, “
Carbon Diffusion Across Dissimilar Steel Welds
,”
Doctoral thesis
, Cambridge, UK.https://www.phase-trans.msm.cam.ac.uk/2007/Race/Pt1.pdf
84.
Zhao
,
Y.
,
Gong
,
J.
,
Wang
,
X.
,
Gao
,
W.
, and
Li
,
Q.
,
2015
, “
Carbon Diffusion in Dissimilar Joints Between P91 and 12Cr1MoV Steels Welded by Different Consumables at High Temperature
,”
Mater. High Temp.
,
32
(
6
), pp.
557
565
.10.1179/1878641315Y.0000000002
85.
Kumar
,
S.
,
Pandey
,
C.
, and
Goyal
,
A.
,
2021
, “
Microstructure and Mechanical Behavior of P91 Steel Dissimilar Welded Joints Made With IN718 Filler
,”
Int. J. Pressure Vessels Piping
,
190
, p.
104290
.10.1016/j.ijpvp.2020.104290
86.
Rathod
,
D.
,
Aravindan
,
S.
,
Singh
,
P. K.
, and
Pandey
,
S.
,
2014
, “
Metallurgical Characterization and Diffusion Studies of Successively Buttered Deposit of Ni-fe Alloy and Inconel on SA508 Ferritic Steel
,”
ISIJ Int.
,
54
(
8
), pp.
1866
1875
.10.2355/isijinternational.54.1866
87.
Mas
,
F.
,
Tassin
,
C.
,
Valle
,
N.
,
Robaut
,
F.
,
Charlot
,
F.
,
Yescas
,
M.
,
Roch
,
F.
,
Todeschini
,
P.
, and
Bréchet
,
Y.
, 2016,
Metallurgical Characterization of Coupled Carbon Diffusion and Precipitation in Dissimilar Steel Welds
,
Springer
, Berlin.
88.
Shankar
,
V.
,
Gill
,
T. P. S.
,
Mannan
,
S. L.
, and
Sundaresan
,
S.
,
2003
, “
Solidification Cracking in Austenitic Stainless Steel Welds
,” Springer, Berlin.10.1007/BF02706438
89.
Nelson
,
J. D.
, and
Baeslack
,
W. A.
, III
,
1985
, “
An Investigation of Weld Hot Cracking in Duplex Stainless Steels
,”
Weld. Res. Suppl.
, pp.
241
250
.https://app.aws.org/wj/supplement/WJ_1987_08_s241.pdf
90.
Adamiec
,
J.
, and
Konieczna
,
N.
,
2021
, “
Assessment of the Hot Cracking Susceptibility of the Inconel 617 Nickel-Based Alloy
,”
Arch. Metall. Mater.
,
66
, pp.
241
248
.http://www.imim.pl/files/archiwum/Vol1_2021/30.pdf
91.
Ye
,
X.
,
Hua
,
X.
,
Wang
,
M.
, and
Lou
,
S.
,
2015
, “
Controlling Hot Cracking in Ni-Based Inconel-718 Superalloy Cast Sheets During Tungsten Inert Gas Welding
,”
J. Mater. Process. Technol.
,
222
, pp.
381
390
.10.1016/j.jmatprotec.2015.03.031
92.
Lippold
,
J. C.
,
2015
,
Welding Metallurgy and Weldability
,
Wiley
,
Hoboken, NJ
.
93.
Fujii
,
T.
,
Yamakawa
,
R.
,
Tohgo
,
K.
, and
Shimamura
,
Y.
,
2021
, “
Analysis of the Early Stage of Stress Corrosion Cracking in Austenitic Stainless Steel by EBSD and XRD
,”
Mater. Charact.
,
172
, p.
110882
.10.1016/j.matchar.2021.110882
94.
Maurya
,
A. K.
,
Pandey
,
C.
, and
Chhibber
,
R.
,
2021
, “
Dissimilar Welding of Duplex Stainless Steel With Ni Alloys: A Review
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104439
.10.1016/j.ijpvp.2021.104439
95.
Wu
,
Q.
,
Xu
,
Q.
,
Jiang
,
Y.
, and
Gong
,
J.
,
2020
, “
Effect of Carbon Migration on Mechanical Properties of Dissimilar Weld Joint
,”
Eng. Fail. Anal.
,
117
, p.
104935
.10.1016/j.engfailanal.2020.104935
96.
Sun
,
Y. L.
,
Obasi
,
G.
,
Hamelin
,
C. J.
,
Vasileiou
,
A. N.
,
Flint
,
T. F.
,
Balakrishnan
,
J.
,
Smith
,
M. C.
, and
Francis
,
J. A.
,
2019
, “
Effects of Dilution on Alloy Content and Microstructure in Multi-Pass Steel Welds
,”
J. Mater. Process. Technol.
,
265
, pp.
71
86
.10.1016/j.jmatprotec.2018.09.037
97.
Dupont
,
J. N.
,
Robino
,
C. V.
,
Marder
,
A. R.
, and
Notis
,
M. R.
,
1998
, “
Solidification of Nb-Bearing Superalloys: Part II. Pseudoternary Solidification Surfaces
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
,
29
(
11
), pp.
2797
2806
.10.1007/s11661-998-0320-x
98.
Banovic
,
S. W.
,
DuPont
,
J. N.
, and
Marder
,
A. R.
,
2002
, “
Dilution and Microsegregation in Dissimilar Metal Welds Between Super Austenitic Stainless Steel and Nickel Base Alloys
,”
Sci. Technol. Weld. Join.
,
7
(
6
), pp.
374
383
.10.1179/136217102225006804
99.
Dupont
,
J. N.
,
Banovic
,
S. W.
, and
Marder
,
A. R.
,
2003
, “
Microstructural Evolution and Weldability of Dissimilar Welds Between a Super Austenitic Stainless Steel and Nickel-Based Alloys
,”
Weld. J.
,
82
, pp.
125
135
.https://app.aws.org/wj/supplement/06-2003-DUPONT-s.pdf
100.
Naffakh
,
H.
,
Shamanian
,
M.
, and
Ashrafizadeh
,
F.
,
2010
, “
Microstructural Evolutions in Dissimilar Welds Between AISI 310 Austenitic Stainless Steel and Inconel 657
,”
J. Mater. Sci.
,
45
(
10
), pp.
2564
2573
.10.1007/s10853-010-4227-8
101.
Rahimi
,
A.
,
Shamanian
,
M.
, and
Szpunar
,
J. A.
,
2020
, “
Effect of Pulsed Current Frequency on Microstructure and Mechanical Properties of Gas-Tungsten-Arc-Welded Joints of UNS R30155
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2635
2647
.10.1007/s11665-020-04752-7
102.
Sirohi
,
S.
,
Pandey
,
C.
, and
Goyal
,
A.
,
2021
, “
Role of the Ni-Based Filler (IN625) and Heat-Treatment on the Mechanical Performance of the GTA Welded Dissimilar Joint of P91 and SS304H Steel
,”
J. Manuf. Process.
,
65
, pp.
174
189
.10.1016/j.jmapro.2021.03.029
103.
Hajiannia
,
I.
,
Shamanian
,
M.
, and
Kasiri
,
M.
,
2013
, “
Microstructure and Mechanical Properties of AISI 347 Stainless Steel/A335 Low Alloy Steel Dissimilar Joint Produced by Gas Tungsten Arc Welding
,”
Mater. Des.
,
50
, pp.
566
573
.10.1016/j.matdes.2013.03.029
104.
Kumar
,
K. G.
,
Ramkumar
,
K. D.
, and
Arivazhagan
,
N.
,
2015
, “
Characterization of Metallurgical and Mechanical Properties on the Multi-Pass Welding of Inconel 625 and AISI 316 L
,”
J. Mech. Sci. Technol.
,
29
(
3
), pp.
1039
1047
.10.1007/s12206-014-1112-4
105.
Rogalski
,
G.
,
Świerczyńska
,
A.
,
Landowski
,
M.
, and
Fydrych
,
D.
,
2020
, “
Mechanical and Microstructural Characterization of Tig Welded Dissimilar Joints Between 304l Austenitic Stainless Steel and Incoloy 800ht Nickel Alloy
,”
Metals (Basel)
,
10
(
5
), p.
559
.10.3390/met10050559
106.
Verma
,
J.
, and
Taiwade
,
R. V.
,
2017
, “
Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—a Review
,”
J. Manuf. Process.
,
25
, pp.
134
152
.10.1016/j.jmapro.2016.11.003
107.
Jiang
,
W.
,
Gong
,
J.
,
Tu
,
S.
, and
Fan
,
Q.
,
2009
, “
A Comparison of Brazed Residual Stress in Plate – Fin Structure Made of Different Stainless Steel
,”
Mater. Des.
, 30(
1
), pp.
23
27
.10.1016/j.matdes.2008.04.051
108.
Nomoto
,
H.
,
2017
,
Development in Materials for Ultra-Supercritical (USC) and Advanced Ultra-Supercritical (A-USC) Steam Turbines
,
Elsevier
, Amsterdam, The Netherlands.
109.
Abe
,
F.
,
2015
, “
Research and Development of Heat-Resistant Materials for Advanced USC Power Plants With Steam Temperatures of 700 °C and Above
,”
Engineering
,
1
(
2
), pp.
211
224
.10.15302/J-ENG-2015031
110.
Zhang
,
Y.
,
Cai
,
Z.
,
Han
,
C.
,
Huo
,
X.
,
Fan
,
M.
,
Li
,
K.
, and
Pan
,
J.
,
2021
, “
Macrosegregation Induced Interface Structure and Its Effect on Creep Failure in Dissimilar Metal Welds Between Ni-Based Alloy and 10% Cr Martensitic Steel
,”
Mater. Sci. Eng. A
,
824
, p.
141847
.10.1016/j.msea.2021.141847
111.
Zhang
,
Y.
,
Li
,
K.
,
Cai
,
Z.
, and
Pan
,
J.
,
2019
, “
Creep Rupture Properties of Dissimilar Metal Weld Between Inconel 617B and Modified 9%Cr Martensitic Steel
,”
Mater. Sci. Eng. A
,
764
, p.
138185
.10.1016/j.msea.2019.138185
112.
Kondo
,
M.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
,
Yin
,
F.
,
Abe
,
F.
,
Kondo
,
M.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
,
Yin
,
F.
, and
Abe
,
F.
,
2013
, “
Suppressing Type IV Failure Via Modification of Heat Affected Zone Microstructures Using High Boron Content in 9Cr Heat Resistant Steel Welded Joints Suppressing Type IV Failure Via Modification of Heat Affected Zone Microstructures Using High Boron Conte
,”
Sci. Technol. Weld. Joining
, 11(2), pp.
216
223
.10.1179/174329306X89260
113.
Chai
,
X.
,
Bundy
,
J. C.
,
Amata
,
M. A.
,
Zhang
,
C.
,
Zhang
,
F.
,
Chen
,
S.
,
Babu
,
S. S.
, and
Kou
,
S.
,
2015
, “
Creep Rupture Performance of Welds of P91 Pipe Steel
,”
Weld. J.
,
94
, p.
145
.https://www.researchgate.net/publication/292489336_Creep_Rupture_Performance_of_Welds_of_P91_Pipe_Steel
114.
Francis
,
J. A.
,
Mazur
,
W.
, and
Bhadeshia
,
H.
,
2006
, “
Type IV Cracking in Ferritic Power Plant Steels
,”
Mater. Sci. Technol.
,
22
(
12
), pp.
1387
1395
.10.1179/174328406X148778
115.
Matsunaga
,
T.
,
Hongo
,
H.
, and
Tabuchi
,
M.
,
2017
, “
Interfacial Failure in Dissimilar Weld Joint of High Boron 9% Chromium Steel and Nickel-Based Alloy Under High-Temperature Creep Condition
,”
Mater. Sci. Eng. A
,
695
, pp.
302
308
.10.1016/j.msea.2017.04.012
116.
Yamazaki
,
M.
,
Watanabe
,
T.
,
Hongo
,
H.
, and
Tabuchi
,
M.
,
2008
, “
Creep Rupture Properties of Welded Joints of Heat Resistant Steels
,”
Proc. Int. Conf. Power Eng.
,
2
(
4
), pp.
1140
1149
.10.1007/978-3-540-76694-0_193
117.
Laha
,
K.
,
Chandravathi
,
K. S.
,
Parameswaran
,
P.
,
Goyal
,
S.
, and
Mathew
,
M. D.
,
2012
, “
A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels
,”
Metall. Mater. Trans. A Phys. Metall. Mater. Sci
,
43
(
4
), pp.
1174
1186
.10.1007/s11661-011-0957-8
118.
Zhao
,
L.
,
Jing
,
H.
,
Xu
,
L.
,
Han
,
Y.
, and
Xiu
,
J.
,
2012
, “
Analysis of Creep Crack Growth Behavior of P92 Steel Welded Joint by Experiment and Numerical Simulation
,”
Mater. Sci. Eng. A
,
558
, pp.
119
128
.10.1016/j.msea.2012.07.094
119.
Pavan
,
A. H. V.
,
Ravibharath
,
R.
, and
Singh
,
K.
,
2015
, “
Creep-Rupture Behavior of SUS 304H – in 617 Dissimilar Metal Welds for AUSC Boiler Applications
,”
Mater. Sci. Forum
,
830–831
, pp.
199
202
.10.4028/www.scientific.net/MSF.830-831.199
120.
Sakthivel
,
T.
,
Vasudevan
,
M.
,
Laha
,
K.
,
Parameswaran
,
P.
,
Chandravathi
,
K. S. S.
,
Mathew
,
M. D. D.
, and
Bhaduri
,
a. K.
,
2011
, “
Comparison of Creep Rupture Behaviour of Type 316 L(N) austenitic Stainless Steel Joints Welded by TIG and Activated TIG Welding Processes
,”
Mater. Sci. Eng. A
,
528
(
22–23
), pp.
6971
6980
.10.1016/j.msea.2011.05.052
121.
Wu
,
G.
,
Ding
,
K.
,
Wei
,
T.
,
Qiao
,
S.
,
Liu
,
X.
, and
Gao
,
Y.
,
2021
, “
Rupture Behavior and Fracture Mode for Inconel 625–9% Cr Steel Dissimilar Welded Joints at High Temperature
,”
Eng. Fail. Anal
,
125
, p.
105412
.10.1016/j.engfailanal.2021.105412
122.
Tabuchi
,
M.
,
Watanabe
,
T.
,
Kubo
,
K.
,
Matsui
,
M.
,
Kinugawa
,
J.
, and
Abe
,
F.
,
2001
, “
Creep Crack Growth Behavior in the HAZ of Weldments of W Containing High Cr Steel
,”
Int. J. Pressure Vessels Piping
,
78
(
11–12
), pp.
779
784
.10.1016/S0308-0161(01)00090-4
123.
Abe
,
F.
,
Tabuchi
,
M.
,
Tsukamoto
,
S.
, and
Shirane
,
T.
,
2010
, “
Microstructure Evolution in HAZ and Suppression of Type IV Fracture in Advanced Ferritic Power Plant Steels
,”
Int. J. Pressure Vessels Piping
,
87
(
11
), pp.
598
604
.10.1016/j.ijpvp.2010.08.005
124.
Xue
,
W.
,
Qian-Gang
,
P.
,
Zhi-Jun
,
L.
,
Hui-Qiang
,
Z.
, and
Yong-Shun
,
T.
,
2011
, “
Creep Rupture Behaviour of P92 Steel Weldment
,”
Eng. Fail. Anal.
,
18
(
1
), pp.
186
191
.10.1016/j.engfailanal.2010.08.020
125.
Abson
,
D. J.
, and
Rothwell
,
J. S.
,
2013
, “
Review of Type IV Cracking of Weldments in 9 – 12% Cr Creep Strength Enhanced Ferritic Steels
,”
Int. Mater. Rev.
,
58
(
8
), pp.
437
473
.10.1179/1743280412Y.0000000016
126.
Kim
,
N.
,
Kang
,
Y.
,
Bang
,
J.
,
Song
,
S.
,
Seo
,
S.-M.
,
Kang
,
C.-Y.
, and
Kang
,
N.
,
2021
, “
Microstructural Evolution and Creep Behavior of the Weld Interface Between 10% Cr Steel and Haynes 282 Filler Metal
,”
Metals
,
11
(
5
), p.
764
.10.3390/met11050764
127.
Kim
,
N.
,
Kang
,
Y.
,
Bang
,
J.
,
Song
,
S.
,
Seo
,
S. M.
,
Kang
,
C. Y.
, and
Kang
,
N.
,
2021
, “
Effect of Postweld Heat Treatments on Type IV Creep Failure in the Intercritical Heat-Affected Zone of 10% Cr Martensitic Steel Welded With Haynes 282 Filler
,”
Metals (Basel)
,
11
(
5
), p.
726
.10.3390/met11050726
128.
Pandey
,
C.
,
Mahapatra
,
M. M.
, and
Kumar
,
P.
,
2018
, “
Effect of Post Weld Heat Treatments on Fracture Frontier and Type IV Cracking Nature of the Crept P91 Welded Sample
,”
Mater. Sci. Eng. A
,
731
, pp.
249
265
.10.1016/j.msea.2018.06.038
129.
Eisazadeh
,
H.
,
Bunn
,
J.
,
Coules
,
H. E.
,
Achuthan
,
A.
,
Goldak
,
J.
, and
Aidun
,
D. K.
,
2016
, “
A Residual Stress Study in Similar and Dissimilar Welds
,”
Weld. J.
,
95
, pp.
111
119
.https://www.osti.gov/pages/servlets/purl/1245352
130.
Withers
,
P. J.
, and
Bhadeshia
,
H.
,
2001
, “
Residual Stress Part 2—Nature and Origins
,”
Mater. Sci. Technol.
,
17
(
4
), pp.
366
375
.10.1179/026708301101510087
131.
Rossini
,
N. S.
,
Dassisti
,
M.
,
Benyounis
,
K. Y.
, and
Olabi
,
A. G.
,
2012
, “
Methods of Measuring Residual Stresses in Components
,”
Mater. Des.
,
35
, pp.
572
588
.10.1016/j.matdes.2011.08.022
132.
De
,
A.
, and
Debroy
,
T.
,
2011
, “
A Perspective on Residual Stresses in Welding
,”
Sci. Technol. Weld. Join.
,
16
(
3
), pp.
204
208
.10.1179/136217111X12978476537783
133.
Balram
,
Y.
, and
Rajyalakshmi
,
G.
,
2019
, “
Thermal Fields and Residual Stresses Analysis in TIG Weldments of SS 316 and Monel 400 by Numerical Simulation and Experimentation
,”
Mater. Res. Express.
,
6
(
8
), p.
0865e2
.10.1088/2053-1591/ab23cf
134.
Javadi
,
Y.
,
2015
, “
Investigation of Clamping Effect on the Welding Residual Stress and Deformation of Monel Plates by Using the Ultrasonic Stress Measurement and Finite Element Method
,”
ASME J. Pressure Vessel Technol.
,
137
, p.
011501
.10.1115/1.4027514
135.
Akbari Mousavi
,
S. A. A.
, and
Miresmaeili
,
R.
,
2008
, “
Experimental and Numerical Analyses of Residual Stress Distributions in TIG Welding Process for 304 L Stainless Steel
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
383
394
.10.1016/j.jmatprotec.2008.01.015
136.
Joseph
,
A.
,
Rai
,
S. K.
,
Jayakumar
,
T.
, and
Murugan
,
N.
,
2005
, “
Evaluation of Residual Stresses in Dissimilar Weld Joints
,”
Int. J. Pressure Vessels Piping
, 82(9), pp.
700
705
.10.1016/j.ijpvp.2005.03.006
137.
Vemanaboina
,
H.
,
Edison
,
G.
, and
Akella
,
S.
,
2019
, “
Validation of Residual Stress Distributions in Multipass Dissimilar Joints for GTAW Process
,”
J. Eng. Sci. Technol.
,
14
, pp.
2964
2978
.https://www.researchgate.net/publication/336170464_VALIDATION_OF_RESIDUAL_STRESS_DISTRIBUTIONS_IN_MULTIPASS_DISSIMILAR_JOINTS_FOR_GTAW_PROCESS
138.
Jiang
,
W.
,
Luo
,
Y.
,
Li
,
J. H.
, and
Woo
,
W.
,
2017
, “
Residual Stress Distribution in a Dissimilar Weld Joint by Experimental and Simulation Study
,”
ASME J. Pressure Vessel Technol.
,
139
, p.
011402
.10.1115/1.4033532
139.
Gomes
,
D. D. A.
,
Castro
,
J. A.
,
Xavier
,
C. R.
, and
Cardoso Lima
,
C. A.
,
2019
, “
Analysis of Residual Stress by the Hole-Drilling Method and Hardness in Dissimilar Joints of Austenitic Stainless Steel AISI 316 L and Inconel 718 Alloy by Autogenous GTAW Process
,”
Mater. Res.
,
22
, pp.
1
5
.https://www.scielo.br/j/mr/a/nWcp4n39s36Tgw8CS55ShKb/abstract/?lang=en
140.
Anawa
,
E. M.
, and
Olabi
,
A. G.
,
2008
, “
Control of Welding Residual Stress for Dissimilar Laser Welded Materials
,”
J. Mater. Process. Technol.
,
204
(
1–3
), pp.
22
33
.10.1016/j.jmatprotec.2008.03.047
141.
Taraphdar
,
P. K.
,
Kumar
,
R.
,
Pandey
,
C.
, and
Mahapatra
,
M. M.
,
2021
, “
Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses
,”
Met. Mater. Int.
,
27
(
9
), pp.
3478
3492
.10.1007/s12540-020-00921-4
142.
Taraphdar
,
P. K.
,
Kumar
,
R.
,
Giri
,
A.
,
Pandey
,
C.
,
Mahapatra
,
M. M.
, and
Sridhar
,
K.
,
2021
, “
Residual Stress Distribution in Thick Double-V Butt Welds With Varying Groove Configuration, Restraints and Mechanical Tensioning
,”
J. Manuf. Process.
,
68
, pp.
1405
1417
.10.1016/j.jmapro.2021.06.046
143.
Taraphdar
,
P. K.
,
Mahapatra
,
M. M.
,
Pradhan
,
A. K.
,
Singh
,
P. K.
,
Sharma
,
K.
, and
Kumar
,
S.
,
2021
, “
Effects of Groove Configuration and Buttering Layer on the Through-Thickness Residual Stress Distribution in Dissimilar Welds
,”
Int. J. Pressure Vessels Piping
,
192
, p.
104392
.10.1016/j.ijpvp.2021.104392
144.
Eisazadeh
,
H.
, and
Aidun
,
D. K.
,
2021
, “
Residual Stress Reduction in Dissimilar Metals Weld
,”
J. Manuf. Process.
,
64
, pp.
1462
1475
.10.1016/j.jmapro.2021.02.062
145.
Gope
,
D. K.
, and
Chattopadhyaya
,
S.
,
2021
, “
Dissimilar Welding of Nickel Based Superalloy With Stainless Steel: Influence of Post Weld Heat Treatment
,”
Mater. Manuf. Process.
, 37(2), pp.
136
–142
.10.1080/10426914.2021.1945095
146.
Dak
,
G.
, and
Pandey
,
C.
,
2021
, “
Experimental Investigation on Microstructure, Mechanical Properties, and Residual Stresses of Dissimilar Welded Joint of Martensitic P92 and AISI 304 L Austenitic Stainless Steel
,”
Int. J. Pressure Vessels Piping
,
194
, p.
104536
.10.1016/j.ijpvp.2021.104536
147.
Sirohi
,
S.
,
Taraphdar
,
P. K.
,
Dak
,
G.
,
Pandey
,
C.
,
Sharma
,
S. K.
, and
Goyal
,
A.
,
2021
, “
Study on Evaluation of Through-Thickness Residual Stresses and Microstructure-Mechanical Property Relation for Dissimilar Welded Joint of Modified 9Cr–1Mo and SS304H Steel
,”
Int. J. Pressure Vessels Piping
,
194
, p.
104557
.10.1016/j.ijpvp.2021.104557
You do not currently have access to this content.