Abstract

The aeroacoustic response of two tandem spirally finned cylinders is experimentally investigated. Three different pairs of finned cylinders are studied with fin pitch-to-root diameter ratios (p/Dr) ranging between 0.37p/Dr0.74. The spiral fins are crimped similar to those used in industrial heat exchangers. The results of the finned cylinders are compared with bare, circular cylinders with a modified equivalent diameter (Deq). The spacing ratio (L/Deq) between the cylinders are kept constant at L/Deq=2.00. The Strouhal number (StDeq) of the tandem finned cylinders is found to be higher compared to the tandem bare cylinders, resulting in an earlier onset of coincidence resonance. Moreover, unlike the tandem bare cylinders, the Strouhal number of the finned cylinders did not depend on the Reynolds number, suggesting that the flow characteristics around the finned cylinders are unaffected by Reynolds number. Only the tandem finned cylinders with the lowest fin pitch-to-root diameter ratio (p/Dr=0.37) were capable of exciting precoincidence acoustic resonance. The precoincidence resonance mechanism is similar to that observed in in-line tube bundles.

References

1.
Fitzpatrick
,
J.
,
1985
, “
The Prediction of Flow-Induced Noise in Heat Exchanger Tube Arrays
,”
J. Sound Vib.
,
99
(
3
), pp.
425
435
.10.1016/0022-460X(85)90379-7
2.
Ziada
,
S.
,
Oengören
,
A.
, and
Bühlmann
,
E.
,
1989
, “
On Acoustical Resonance in Tube Arrays—Part I: Experiments
,”
J. Fluids Struct.
,
3
(
3
), pp.
293
314
.10.1016/S0889-9746(89)90083-2
3.
Ziada
,
S.
,
Oengören
,
A.
, and
Bühlmann
,
E.
,
1989
, “
On Acoustical Resonance in Tube Arrays—Part II: Damping Criteria
,”
J. Fluids Struct.
,
3
(
3
), pp.
315
324
.10.1016/S0889-9746(89)90091-1
4.
Oeng
,
Ö. A.
, and
Ziada
,
S.
,
1998
, “
An in-Depth Study of Vortex Shedding, Acoustic Resonance and Turbulent Forces in Normal Triangle Tube Arrays
,”
J. Fluids Struct.
,
12
(
6
), pp.
717
758
.10.1006/jfls.1998.0162
5.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
A Parametric Study of the Resonance Mechanism of Two Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
(
2
), p.
021302
.10.1115/1.3027452
6.
Finnegan
,
S.
,
Meskell
,
C.
, and
Ziada
,
S.
,
2010
, “
Experimental Investigation of the Acoustic Power Around Two Tandem Cylinders
,”
ASME J. Pressure Vessel Technol.
,
132
(
4
), p.
041306
.10.1115/1.4001701
7.
Mohany
,
A.
, and
Ziada
,
S.
,
2005
, “
Flow-Excited Acoustic Resonance of Two Tandem Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
21
(
1
), pp.
103
119
.10.1016/j.jfluidstructs.2005.05.018
8.
Hanson
,
R.
,
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
Flow-Excited Acoustic Resonance of Two Side-by-Side Cylinders in Cross-Flow
,”
J. Fluids Struct.
,
25
(
1
), pp.
80
94
.10.1016/j.jfluidstructs.2008.03.008
9.
Mohany
,
A.
,
Arthurs
,
D.
,
Bolduc
,
M.
,
Hassan
,
M.
, and
Ziada
,
S.
,
2014
, “
Numerical and Experimental Investigation of Flow-Acoustic Resonance of Side-by-Side Cylinders in a Duct
,”
J. Fluid Struct.
,
48
, pp.
316
331
.10.1016/j.jfluidstructs.2014.03.015
10.
Arafa
,
N.
, and
Mohany
,
A.
,
2016
, “
Flow-Excited Acoustic Resonance of Isolated Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
138
(
1
), p.
011302
.10.1115/1.4030270
11.
Shaaban
,
M.
, and
Mohany
,
A.
,
2019
, “
Characteristics of Acoustic Resonance Excitation by Flow Around Inline Cylinders
,”
ASME J. Pressure Vessel Technol.
,
141
(
5
), p.
051301
.10.1115/1.4044118
12.
Shaaban
,
M.
, and
Mohany
,
A.
,
2019
, “
Phase-Resolved PIV Measurements of Flow Over Three Unevenly Spaced Cylinders and Its Coupling with Acoustic Resonance
,”
Exp. Fluids
,
60
(
4
), p.
71
.10.1007/s00348-019-2720-7
13.
Arafa
,
N.
,
Tariq
,
A.
,
Mohany
,
A.
, and
Hassan
,
M.
,
2014
, “
Effect of Cylinder Location Inside a Rectangular Duct on the Excitation Mechanism of Acoustic Resonance
,”
Can. Acoust.
,
42
(
1
), pp.
33
40
.
14.
Mohany
,
A.
,
2012
, “
Self-Excited Acoustic Resonance of Isolated Cylinders in Cross-Flow
,”
Nucleic Rev.
,
1
(
1
), pp.
45
55
.10.12943/ANR.2012.00007
15.
Nemoto
,
A.
,
1997
, “
Flow-Induced Acoustic Resonance with Various Finned Tube Banks
,” 4th International Symposium on
Fluid-Structure Interactions, Aeroelasticity, Flow-Induced Vibration and Noise
, Dallas, TX, Nov. 16–21, pp.
311
320
.10.1299/jsmemecjo.2000.1.0_933
16.
Mair
,
W.
,
Jones
,
P.
, and
Palmer
,
R.
,
1975
, “
Vortex Shedding From Finned Tubes
,”
J. Sound Vib.
,
39
(
3
), pp.
293
296
.10.1016/S0022-460X(75)80082-4
17.
Ryu
,
B.-N.
,
Kim
,
K.-C.
, and
Boo
,
J.-S.
,
2003
, “
The Effect of Serrated Fins on the Flow around a Circular Cylinder
,”
KSME Int. J.
,
17
(
6
), pp.
925
934
.10.1007/BF02983407
18.
Hirota
,
K.
,
Nakamura
,
T.
,
Kikuchi
,
H.
,
Isozaki
,
K.
, and
Kawahara
,
H.
,
2002
, “
Fluidelastic and Vortex Induced Vibration of a Finned Tube Array
,”
ASME
Paper No. IMECE2002-32793.10.1115/IMECE2002-32793
19.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2018
, “
Near-Wake Characteristics and Acoustic Resonance Excitation of Crimped Spirally Finned Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
140
(
5
), p.
051301
.10.1115/1.4040549
20.
Arafa
,
N.
, and
Mohany
,
A.
,
2015
, “
Aeroacoustic Response of a Single Cylinder With Straight Circular Fins in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
137
(
5
), p.
051301
.10.1115/1.4029658
21.
Arafa
,
N.
, and
Mohany
,
A.
,
2019
, “
Wake Structures and Acoustic Resonance Excitation of a Single Finned Cylinder in Cross-Flow
,”
J. Fluids Struct.
,
86
, pp.
70
93
.10.1016/j.jfluidstructs.2019.01.025
22.
Islam
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Shedding Characteristics in the Wake of Circular Finned Cylinders
,”
Phys. Fluids
,
32
(
4
), p.
045113
.10.1063/5.0005079
23.
Alziadeh
,
M.
, and
Mohany
,
A.
,
2019
, “
Passive Noise Control Technique for Suppressing Acoustic Resonance Excitation of Spirally Finned Cylinders in Cross-Flow
,”
Exp. Therm. Fluid Sci.
,
102
, pp.
38
51
.10.1016/j.expthermflusci.2018.10.029
24.
Pongsoi
,
P.
,
Pikulkajorn
,
S.
, and
Wongwises
,
S.
,
2014
, “
Heat Transfer and Flow Characteristics of Spiral Fin-and-Tube Heat Exchangers: A Review
,”
Int. J. Heat Mass Transfer
,
79
, pp.
417
431
.10.1016/j.ijheatmasstransfer.2014.07.072
25.
Pongsoi
,
P.
,
Pikulkajorn
,
S.
,
Wang
,
C.-C.
, and
Wongwises
,
S.
,
2012
, “
Effect of Number of Tube Rows on the Air-Side Performance of Crimped Spiral Fin-and-Tube Heat Exchanger With a Multipass Parallel and Counter Cross-Flow Configuration
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1403
1411
.10.1016/j.ijheatmasstransfer.2011.09.064
26.
Krarti
,
M.
,
2018
,
Optimal Design and Retrofit of Energy Efficient Buildings, Communities, and Urban Centers
,
Butterworth-Heinemann
, Kidlington, Oxford, UK.
27.
Alziadeh
,
M.
,
2017
, “
Flow-Sound Interaction Mechanism of a Single Spirally Finned Cylinder in Cross-Flow
,”
M.Sc. thesis
,
University of Ontario Institute of Technology
, Oshawa, ON, Canada.10.13140/RG.2.2.12457.65123
28.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
,
258
, pp.
287
316
.10.1017/S0022112094003332
29.
Lienhard
,
J. H.
,
1966
, “
Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders
,”
Technical Extension Service
, Vol.
300
,
Washington State University
,
Pullman, WA
.https://www.worldcat.org/title/synopsis-of-lift-drag-and-vortex-frequency-data-for-rigid-circular-cylinders/oclc/4322001
30.
Hamakawa
,
H.
,
Matsuoka
,
H.
,
Hosokai
,
K.
,
Nishida
,
E.
, and
Kurihara
,
E.
,
2014
, “
Characteristics of Aerodynamic Sound Radiated From Two Finned Cylinders
,”
ASME
Paper No. PVP2014-28855.10.1115/PVP2014-28855
31.
Blevins
,
R.
, and
Bressler
,
M.
,
1993
, “
Experiments on Acoustic Resonance in Heat Exchanger Tube Bundles
,”
J. Sound Vib.
,
164
(
3
), pp.
503
533
.10.1006/jsvi.1993.1231
32.
Mohany
,
A.
, and
Ziada
,
S.
,
2009
, “
Numerical Simulation of the Flow-Sound Interaction Mechanisms of a Single and Two-Tandem Cylinders in Cross-Flow
,”
ASME J. Pressure Vessel Technol.
,
131
(
3
), p.
031306
.10.1115/1.3110029
33.
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Experimental Study of the Self-Excited Resonance Effect on the Dynamic Lift and Flow Structure Around Inline Cylinders
,”
J. Fluids Struct.
,
96
, p.
103015
.10.1016/j.jfluidstructs.2020.103015
34.
Rockwell
,
D.
, and
Naudascher
,
E.
,
1979
, “
Self-Sustained Oscillations of Impinging Free Shear Layers
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
67
94
.10.1146/annurev.fl.11.010179.000435
35.
Igarashi
,
T.
,
1981
, “
Characteristics of the Flow Around Two Circular Cylinders Arranged in Tandem: 1st Report
,”
Bull. JSME
,
24
(
188
), pp.
323
331
.10.1299/jsme1958.24.323
36.
Xu
,
G.
, and
Zhou
,
Y.
,
2004
, “
Strouhal Numbers in the Wake of Two Inline Cylinders
,”
Exp. Fluids
,
37
(
2
), pp.
248
256
.10.1007/s00348-004-0808-0
37.
Zdravkovich
,
M.
,
1987
, “
The Effects of Interference between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
.10.1016/S0889-9746(87)90355-0
38.
Ljungkrona
,
L.
, and
Sundén
,
B.
,
1993
, “
Flow Visualization and Surface Pressure Measurement on Two Tubes in an Inline Arrangement
,”
Exp. Thermal Fluid Sci.
,
6
(
1
), pp.
15
27
.10.1016/0894-1777(93)90037-J
39.
Howe
,
M. S.
, and
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
,
Cambridge University Press
, Cambridge, UK.
40.
Islam
,
M.
,
Shaaban
,
M.
, and
Mohany
,
A.
,
2020
, “
Vortex Dynamics and Acoustic Sources in the Wake of Finned Cylinders During Resonance Excitation
,”
Phys. Fluids
,
32
(
7
), p.
075117
.10.1063/5.0016076
41.
Howe
,
M.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
(
3
), pp.
407
411
.10.1016/0022-460X(80)90308-9
42.
Blevins
,
R.
, and
Bressler
,
M.
,
1987
, “
Acoustic Resonance in Heat Exchanger Tube Bundles—Part I: Physical Nature of the Phenomenon
,”
ASME J. Pressure Vessel Technol.
,
109
(
3
), pp.
275
281
.10.1115/1.3264863
43.
Ziada
,
S.
,
2006
, “
Vorticity Shedding and Acoustic Resonance in Tube Bundles
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
2
), pp.
186
189
.10.1590/S1678-58782006000200008
You do not currently have access to this content.