Abstract

The thermally induced steam generator tube rupture (TI-SGTR) accident is a principal contributor to mean early and latent cancer fatality among the containment bypass accidents. To mitigate the consequence of a TI-SGTR accident, use of a bypass mitigation device has been proposed. This study investigated the feasibility of using the proposed bypass mitigation device based on computational fluid dynamics (CFD) analysis and structural safety assessment using a commercial simulation software (Fluent). As TI-SGTR accident may occur if main steam safety valve (MSSV) for preventing over pressurization is stuck-open in station black out (SBO) scenario, the analysis included the modeling of the flow of dry steam from MSSV to the capturing pipe of the mitigation system. According to CFD analysis results, after passing MSSV, the inlet pressure was decreased to the atmospheric pressure. The structural safety analysis was based on evaluating the equivalent stress distribution of the capturing pipe. Under three inlet pressure conditions, the largest concentrated stress on the capturing pipe was found to be less than 10% to tensile strength of the steel. For the concrete support, the safety margins may not be sufficient for 8.7 MPa inlet pressure condition. The thermal-mechanical analysis was performed for the period of 15 min, indicating that the effect of thermal expansion is small and that the resulting strain does not pose a concern. The results of this study can also be utilized to study externally released flow through MSSV or to identify directions for supplementing or reinforcing the migration system.

References

1.
Nuclear Regulatory Commission
,
2012
, “
State-of-the-Art Reactor Consequence Analyses (SOARCA) Report
,” U.S. Nuclear Regulatory Commission , Washington, DC, Report No. NUREG-1935.
2.
Nuclear Regulatory Commission
,
1989
, “
Severe Accident Risks: An Assessment of Five U.S. Commercial Nuclear Power Plants
,”U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-1150.
3.
Breeding
,
R.
,
Helton
,
J.
,
Murfin
,
W.
,
Smith
,
L.
,
Johnson
,
J.
,
Jow
,
H.-N.
, and
Shiver
,
A.
,
1992
, “
The NUREG-1150 Probabilistic Risk Assessment for the Surry Nuclear Power Station
,”
Nucl. Eng. Des.
,
135
(
1
), pp.
29
59
.10.1016/0029-5493(92)90301-B
4.
Kang
,
S. W.
, and
Yim
,
M. S.
,
2016
, “
Defining Design Limits of a Portable Radiation Dispersion Prevention System
,”
Proceedings of the KNS 2016 Spring Meeting
, Jeju, Republic of Korea, May.
11
13
.https://inis.iaea.org/search/search.aspx?orig_q=RN:48048786
5.
Ullah
,
S.
, and
Yim
,
M.-S.
,
2017
, “
Suppression of Radioactive Material Dispersion in the Event of a Radioactivity Release Accident at a Nuclear Power Plant
,”
GLOBAL International Nuclear Fuel Cycle Conference
, Seoul, Republic of Korea, Sep.
24
29
.
6.
Kang
,
S. W.
, and
Yim
,
M. S.
,
2017
, “
Analysis of the Radioactive Release Characteristics for Development of the Containment Bypass Mitigation System
,”
Proceedings of the KNS 2017 Fall Meeting, Kyungju, Republic of Korea, Oct. 25–27
.
7.
Ullah
,
S.
,
Kang
,
S.
,
Wang
,
W.
, and
Byuna
,
H.
, and
Yim
,
M. S.
,
2018
, “
Steam Generator Tube Rupture Accident at a NPP and Exploration of Mitigation Strategies for Its Consequence
,” Proceedings of the KNS 2018 Spring Meeting, Jeju, Republic of Korea, May.
16
18
.
8.
U.S. Nuclear Regulatory Commission
,
1987
, “
Reactor Risk Reference Document
,” U.S. Nuclear Regulatory Commission, Washington, DC, Report No. NUREG-1150.
9.
U.S. Nuclear Regulatory Commission
,
2012
, “
State-of-the-Art Reactor Consequence Analyses Project
,”
U.S. Nuclear Regulatory Commission
, Washington, DC, Report No. NUREG/CR-7110.
10.
ANSYS,
, ANSYS
® Workbench Release 18.1
, ANSYS, Inc., Canonsburg.
11.
Vu
,
B.
,
Wang
,
T.-S.
,
Shih
,
M.-H.
, and
Soni
,
B.
,
1994
, “
Navier–Stokes Flow Field Analysis of Compressible Flow in a High Pressure Safety Relief Valve
,”
Appl. Math. Comput.
,
65
(
1–3
), pp.
345
353
.10.1016/0096-3003(94)90187-2
12.
Mokhtarzadeh-Dehghan
,
M.
,
Ladommatos
,
N.
, and
Brennan
,
T.
,
1997
, “
Finite Element Analysis of Flow in a Hydraulic Pressure Valve
,”
Appl. Math. Modell.
,
21
(
7
), pp.
437
445
.10.1016/S0307-904X(97)00038-3
13.
Cavallo
,
P.
,
Hosangadi
,
A.
, and
Ahuja
,
V.
,
2005
, “
Transient Simulations of Valve Motion in Cryogenic Systems
,”
AIAA
Paper No.
2005
5152
.10.2514/6.2005-5152
14.
Dempster
,
W.
,
Lee
,
C.
, and
Deans
,
J.
,
2006
, “
Prediction of the Flow and Force Characteristics of Safety Relief Valves
,”
ASME
Paper No. PVP2006-ICPVT-11-93142.10.1115/PVP2006-ICPVT-11-93142
15.
Moncalvo
,
D.
,
Friedel
,
L.
,
Jörgensen
,
B.
, and
Höhne
,
T.
,
2009
, “
Sizing of Safety Valves Using ANSYS CFX‐Flo®
,”
Chem. Eng. Technol.
,
32
(
2
), pp.
247
251
.10.1002/ceat.200800530
16.
Beune
,
A.
,
Kuerten
,
J. G.
, and
Schmidt
,
J.
,
2011
, “
Numerical Calculation and Experimental Validation of Safety Valve Flows at Pressures Up to 600 Bar
,”
AIChE J.
,
57
(
12
), pp.
3285
3298
.10.1002/aic.12534
17.
Kourakos
,
V.
,
Rambaud
,
P.
,
Buchlin
,
J.-M.
, and
Chabane
,
S.
,
2013
, “
Flowforce in a Safety Relief Valve Under Incompressible, Compressible, and Two-Phase Flow Conditions (PVP-2011-57896)
,”
SME J. Pressure Vessel Technol.
,
135
(
1
), p.
011305
.10.1115/1.4006904
18.
Song
,
X.
,
Cui
,
L.
,
Cao
,
M.
,
Cao
,
W.
,
Park
,
Y.
, and
Dempster
,
W. M.
,
2014
, “
A CFD Analysis of the Dynamics of a Direct-Operated Safety Relief Valve Mounted on a Pressure Vessel
,”
Energy Convers. Manage.
,
81
, pp.
407
419
.10.1016/j.enconman.2014.02.021
19.
Scuro
,
N.
,
Angelo
,
E.
,
Angelo
,
G.
, and
Andrade
,
D.
,
2018
, “
A CFD Analysis of the Flow Dynamics of a Directly-Operated Safety Relief Valve
,”
Nucl. Eng. Des.
,
328
, pp.
321
332
.10.1016/j.nucengdes.2018.01.024
20.
Zhang
,
J.
,
Yang
,
L.
,
Dempster
,
W.
,
Yu
,
X.
,
Jia
,
J.
, and
Tu
,
S.-T.
,
2018
, “
Prediction of Blowdown of a Pressure Relief Valve Using Response Surface Methodology and CFD Techniques
,”
Appl. Therm. Eng.
,
133
, pp.
713
726
.10.1016/j.applthermaleng.2018.01.079
21.
Bungartz
,
H.-J.
, and
Schäfer
,
M.
,
2006
,
Fluid-Structure Interaction: Modelling, Simulation, Optimisation
,
Springer Science & Business Media
, Berlin.
22.
Shih
,
T.-H.
,
1993
,
A Realizable Reynolds Stress Algebraic Equation Model
,
Lewis Research Center, Institute for Computational Mechanics in Propulsion
, Cleveland, OH.
23.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New κ-ε Eddy Viscoisity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
24.
Suman
,
S.
,
Biswas
,
P.
, and
Sridhar
,
P.
,
2016
, “
Numerical Prediction of Welding Distortion in Submerged Arc Welded Butt and Fillet Joints
,”
Proceeding of International Conference on Design and Manufacturing
, Chennai, India, Dec.
16
17
.https://www.researchgate.net/publication/315366084_Numerical_prediction_of_welding_distortion_in_submerged_arc_welded_butt_and_fillet_joints
25.
Soares
,
G. C.
,
Rodrigues
,
M. C. M.
, and
Santos
,
L. D. A.
,
2017
, “
Influence of Temperature on Mechanical Properties, Fracture Morphology and Strain Hardening Behavior of a 304 Stainless Steel
,”
Mater. Res.
,
20
(
Suppl. 2
), pp.
141
151
.10.1590/1980-5373-mr-2016-0932
26.
Chen
,
J.
, and
Young
,
B.
,
2006
, “
Stress–Strain Curves for Stainless Steel at Elevated Temperatures
,”
Eng. Struct.
,
28
(
2
), pp.
229
239
.10.1016/j.engstruct.2005.07.005
27.
Bauccio
,
M.
,
1993
,
ASM Metals Reference Book
,
ASM International
, Cleveland, OH.
28.
Bamforth
,
P.
,
Chisholm
,
D.
,
Gibbs
,
J.
, and
Harrison
,
T.
,
2008
, “
Properties of Concrete for Use in Eurocode 2
,” MPA-The Concrete Centre, London, UK.
You do not currently have access to this content.